The influence of solution electrical conductivity and ion composition on the performance of plasma reactors for water treatment applications is only partially understood. This study uses a point–point discharge over the surface of water in argon gas to determine the influence of solution conductivity, in the range of 0.3–45 mS/cm, on the physiochemical properties of spark discharges and the removal of two organic contaminants: perfluorooctanoic acid (PFOA) and Rhodamine B dye. The influence of various ions was also explored using chlorine and non-chlorine salts to adjust solution conductivity. The removal of PFOA increased with conductivity regardless of the salt type due to the salting out effect which increased PFOA's interfacial concentration. The removal of Rhodamine B dye depended on both salt type and solution electrical conductivity. In the presence of non-chorine salts, UV photolysis was the main mechanism for the dye degradation and its removal rate did not change with conductivity. The dye removal rate was the highest in the presence of chloride-based salts at the highest values of solution conductivities. In the presence of chorine salts, OH radicals are produced by the discharge generated hypochlorous acid, which is mixed into the bulk solution to react with the Rhodamine B dye. The generation rate of hydroxyl radicals appears to decrease with increasing solution conductivity, and these species are not directly involved in the degradation of the two compounds investigated in this study.

1.
W.
Bian
and
L.
Lei
,
J. Hazard. Mater.
148
,
178
(
2007
).
2.
S.
Gasanova
, “Aqueous-phase electrical discharges: generation, investigation and application for organics removal from water,” Ph.D. Dissertation (University of Duisburg-Essen, 2013).
3.
R. K.
Singh
,
S.
Fernando
,
S. F.
Baygi
,
N.
Multari
,
S.
Mededovic Thagard
, and
T. M.
Holsen
,
Environ. Sci. Technol.
53
,
2731
2738
(
2019
).
4.
R. K.
Singh
,
N.
Multari
,
C.
Nau-Hix
,
R. H.
Anderson
,
S. D.
Richardson
,
T. M.
Holsen
, and
S.
Mededovic Thagard
,
Environ. Sci. Technol.
53
,
11375
11382
(
2019
).
5.
G. R.
Stratton
,
F.
Dai
,
C. L.
Bellona
,
T. M.
Holsen
,
E. R. V.
Dickenson
, and
S.
Mededovic Thagard
,
Environ. Sci. Technol.
51
,
1643
(
2017
).
6.
G. R.
Stratton
,
C. L.
Bellona
,
F.
Dai
,
T. M.
Holsen
, and
S.
Mededovic Thagard
,
Chem. Eng. J.
273
,
543
(
2015
).
7.
A. T.
Sugiarto
and
M.
Sato
,
Thin Solid Films
386
,
295
(
2001
).
8.
P.
Šunka
,
Phys. Plasmas
8
,
2587
(
2001
).
9.
S. M.
Thagard
,
G. R.
Stratton
,
F.
Dai
,
C. L.
Bellona
,
T. M.
Holsen
,
D. G.
Bohl
,
E.
Paek
, and
E. R.
Dickenson
,
J. Phys. D: Appl. Phys.
50
,
014003
(
2017
).
10.
P.
Lukeš
, “
Water treatment by pulsed streamer corona discharge
,”
Ph.D. thesis
(
Institute of Chemical Technology, Prague and Institute of Plasma Physics, AS CR
,
2001
).
11.
J. B. F. O.
Barauna
,
C. S.
Pereira
,
I. A.
Gonçalves
,
J. O.
Vitoriano
, and
C. A.
Junior
,
Mater. Res.
20
,
215
(
2017
).
12.
T.
Maehara
,
S.
Honda
,
C.
Inokuchi
,
M.
Kuramoto
,
S.
Mukasa
,
H.
Toyota
,
S.
Nomura
, and
A.
Kawashima
,
Plasma Sources Sci. Technol.
20
,
034016
(
2011
).
13.
N. S.
Midi
,
R.
Ohyama
, and
S.
Yamaguchi
,
J. Electrost.
71
,
823
(
2013
).
14.
K. Y.
Shih
and
B. R.
Locke
,
Plasma Chem. Plasma Process.
30
,
1
(
2010
).
15.
R. J.
Wandell
,
H.
Wang
,
K.
Tachibana
,
B.
Makled
, and
B. R.
Locke
,
Plasma Processes Polym.
15
,
1800008
(
2018
).
16.
J.
Woloszko
,
K. R.
Stalder
, and
I. G.
Brown
,
IEEE Trans. Plasma Sci.
30
,
1376
1383
(
2002
).
17.
S. M.
Thagard
,
K.
Takashima
, and
A.
Mizuno
,
Plasma Chem. Plasma Process.
29
,
455
(
2009
).
18.
P.
Bruggeman
,
D.
Schram
,
M. A.
González
,
R.
Rego
,
M. G.
Kong
, and
C.
Leys
,
Plasma Sources Sci. Technol.
18
,
025017
(
2009
).
19.
B.
Sun
,
M.
Sato
, and
J.
Sid Clements
,
J. Electrost.
39
,
189
(
1996
).
20.
B. R.
Locke
and
K. Y.
Shih
,
Plasma Sources Sci. Technol.
20
,
034006
(
2011
).
21.
H.
Wang
,
R. J.
Wandell
,
K.
Tachibana
,
J.
Voráč
, and
B. R.
Locke
,
J. Phys. D: Appl. Phys.
52
,
075201
(
2019
).
22.
A.
Hamdan
,
K.
Čerņevičs
, and
M. S.
Cha
,
J. Phys. D: Appl. Phys.
50
,
185207
(
2017
).
23.
K. Y.
Shih
, “
Analysis of external pressure and solution temperature and conductivity on pulsed electrical discharge in aqueous soluton and bubbles
,” Ph.D. dissertation (
Florida State University
,
2010
).
24.
B. P.
Dojcompvoc
,
G. M.
Roglic
,
B. M.
Obradovic
,
M. M.
Kuraica
,
T. B.
Tosti
, and
M. D.
Markovic
,
J. Serb. Chem. Soc.
77
,
535
(
2012
).
25.
K.
Tachibana
and
K.
Yasuoka
,
J. Phys. D: Appl. Phys.
53
,
125203
(
2020
).
26.
H.
Park
,
C. D.
Vecitis
, and
M. R.
Hoffmann
,
J. Phys. Chem. C
113
,
7935
(
2009
).
27.
V.
Jirásek
and
P.
Lukeš
,
Plasma Sources Sci. Technol.
28
,
035015
(
2019
).
28.
M. L.
Alegre
,
M.
Geronés
,
J. A.
Rosso
,
S. G.
Bertolotti
,
A. M.
Braun
,
D. O.
Mártire
, and
M. C.
Gonzalez
,
J. Phys. Chem. A
104
,
3117
(
2000
).
29.
S. A.
Norberg
,
W.
Tian
,
E.
Johnsen
, and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
47
,
475203
(
2014
).
30.
X.
Hao
,
M.
Zhou
,
Q.
Xin
, and
L.
Lei
,
Chemosphere
66
,
2185
(
2007
).
31.
M.
Marković
,
M.
Jović
,
D.
Stanković
,
V.
Kovačević
,
G.
Roglić
,
G.
Gojgić-Cvijović
, and
D.
Manojlović
,
Sci. Total Environ.
505
,
1148
(
2015
).
32.
L.
Wang
and
X.
Jiang
,
J. Hazard. Mater.
161
,
926
(
2009
).
33.
R. K.
Singh
,
N.
Multari
,
C.
Nau-Hix
,
M.
Woodard
,
M.
Nickelsen
,
S.
Mededovic Thagard
, and
T. M.
Holsen
,
Environ. Sci. Technol.
54
,
13973
(
2020
).
34.
G. M.
Eisenberg
,
Ind. Eng. Chem. Analy. Ed.
15
,
327
(
1943
).
35.
I.
Kornev
,
F.
Saprykin
, and
S.
Preis
,
J. Electrost.
89
,
42
(
2017
).
36.
K. R.
Stalder
,
J.
Woloszko
,
I. G.
Brown
, and
C. D.
Smith
,
Appl. Phys. Lett.
79
,
4503
(
2001
).
37.
B. R.
Locke
and
S.
Mededovic Thagard
,
Plasma Chem. Plasma Process.
32
,
875
(
2012
).
38.
S.
Mededovic
and
B. R.
Locke
,
J. Phys. D: Appl. Phys.
40
,
7734
(
2007
).
39.
L.
Schaper
,
K. R.
Stalder
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
20
,
034004
(
2011
).
40.
K. Y.
Shih
and
B. R.
Locke
,
IEEE Trans. Plasma Sci.
39
,
883
(
2011
).
41.
E. A.
Martin
,
J. Appl. Phys.
21
,
255
(
1959
).
42.
B.
Sun
,
M.
Sato
, and
J. S.
Clements
,
Environ. Sci. Technol.
34
,
509
(
2000
).
43.
S.
Wu
and
A.
Krosuri
,
Int. J. Environ. Sci. Technol.
17
,
615
(
2020
).
44.
P.
Rumbach
,
D. M.
Bartels
,
R. M.
Sankaran
, and
D. B.
Go
,
Nat. Commun.
6
,
1
7
(
2015
).
45.
T. H.
Chung
,
H.
Ra Kang
, and
M.
Keun Bae
,
Phys. Plasmas
19
,
113502
(
2012
).
46.
R. A.
Gottscho
and
T. A.
Miller
,
Pure Appl. Chem.
56
,
189
(
1984
).
47.
H.
Akatsuka
,
Adv. Phys.: X
4
,
1592707
(
2019
).
48.
J.
Wang
,
Y.
Sun
,
H.
Jiang
, and
J.
Feng
,
J. Saudi Chem. Soc.
21
,
545
(
2017
).
49.
Y.
Wang
,
F. A.
Roddick
, and
L.
Fan
,
Chemosphere
185
,
297
(
2017
).
50.
K. A.
Barzen-Hanson
,
S. C.
Roberts
,
S.
Choyke
,
K.
Oetjen
,
A.
McAlees
,
N.
Riddell
,
R.
McCrindle
,
P. L.
Ferguson
,
C. P.
Higgins
, and
J. A.
Field
,
Environ. Sci. Technol.
51
,
2047
(
2017
).
51.
J.
Costanza
,
M.
Arshadi
,
L. M.
Abriola
, and
K. D.
Pennell
,
Environ. Sci. Technol.
6
,
487
(
2019
).
52.
X. C.
Hu
,
D. Q.
Andrews
,
A. B.
Lindstrom
,
T. A.
Bruton
,
L. A.
Schaider
,
P.
Grandjean
,
R.
Lohmann
,
C. C.
Carignan
,
A.
Blum
,
S. A.
Balan
,
C. P.
Higgins
, and
E. M.
Sunderland
,
Environ. Sci. Technol. Lett.
3
,
344
350
(
2016
).
53.
B. M.
Nzeribe
,
M.
Crimi
,
S.
Mededovic Thagard
, and
T. M.
Holsen
,
Crit. Rev. Environ. Sci. Technol.
49
,
866
(
2019
).
54.
Z.
Wang
,
J. C.
DeWitt
,
C. P.
Higgins
, and
I. T.
Cousins
,
Environ. Sci. Technol.
51
,
2508
(
2017
).
55.
S.
Stockenhuber
,
N.
Weber
,
L.
Dixon
,
J.
Lucas
,
C.
Grimison
,
M.
Bennett
,
M.
Stockenhuber
,
J.
Mackie
, and
E.
Kennedy
, in 16th International Conference on Environmental Science and Technology (2019), available at https://cest2019.gnest.org/sites/default/files/presentation_file_list/cest2019_00155_oral_paper.pdf.
56.
F.
Xiao
,
P. C.
Sasi
,
B.
Yao
,
A.
Kubátová
,
S. A.
Golovko
,
M. Y.
Golovko
, and
D.
Soli
,
Environ. Sci. Technol. Lett.
7
,
343
(
2020
).
57.
T.
Benvenuti
,
A. P.
Gabriel
,
A. N. A.
Heberle
,
M. P. P.
Lucena
,
P. M. H.
Petter
,
A.
Meneguzzi
, and
A. M.
Bernardes
,
Braz. J. Chem. Eng.
35
,
957
(
2018
).
58.
P.
Lukes
,
M.
Clupek
,
V.
Babicky
, and
P.
Sunka
,
Plasma Sources Sci. Technol.
17
,
024012
(
2008
).
59.
S.
Vaalgamaa
,
A.
Vähätalo
,
N.
Perkola
, and
S.
Huhtala
,
Sci. Total Environ.
409
,
3043
(
2011
).
60.
T.
Fujii
,
A.
Ishii
, and
M.
Anpo
,
J. Photochem. Photobiol. A Chem.
54
,
231
(
1990
).
61.
Z. L.
Ye
,
C. Q.
Cao
,
J. C.
He
,
R. X.
Zhang
, and
H. Q.
Hou
,
Chin. Chem. Lett.
20
,
706
(
2009
).
62.
H.
Fu
,
C.
Pan
,
W.
Yao
, and
Y.
Zhu
,
J. Phys. Chem. B
109
,
22432
(
2005
).
63.
V. L.
Snoeyink
and
D.
Jenkins
,
Water Chemistry
(
Wiley
,
1980
).
64.
N. O.
Mchedlov-Petrosyan
and
Y. V.
Kholin
,
Russ. J. Appl. Chem.
77
,
414
(
2003
).
65.
Z.
Machala
,
B.
Tarabova
,
K.
Hensel
,
E.
Spetlikova
,
L.
Sikurova
, and
P.
Lukes
,
Plasma Processes Polym.
10
,
649
(
2013
).
66.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
104
,
7702
(
2000
).
67.
S.
Hii
,
S.
Yong
, and
C.
Wong
,
J. Appl. Phycol.
21
,
625
(
2009
).
68.
R.
Zhang
,
M.
Hummelgård
,
G.
Lv
, and
H.
Olin
,
Carbon
49
,
1126
(
2011
).

Supplementary Material

You do not currently have access to this content.