The origin of low conductivity and high near-infrared absorption observed in sputtered Cs-polytungstate (CPT) thin films was studied using x-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS), and first-principles calculations. The film's resistivity was directly correlated with the intensity of XPS W5+4f peaks, and the mobility of the conduction band (CB) electrons was evaluated as 1.27 × 10−7 cm2 V−1 s−1, both implying the dominance of W5+-trapped electrons in the CB. The presence of H2O residue in the films was detected from XPS O 1s and TDS spectra, suggesting that the incorporation of water upon film deposition induced numerous W/Cs defects reported in Part I. The two representative types of optical profiles were reproduced by first-principles calculations with W-deficient CPT and H2O-incorporated pyrochlore, respectively. We conclude that water-induced W/Cs defects annihilated free electrons in the films, causing loss of conductance and plasma reflection, whereas W5+-trapped electrons generated by O and W vacancies underwent polaronic excitations that generated large near-infrared absorption.

1.
O. I.
Malyi
,
M. T.
Yeung
,
K. R.
Poeppelmeier
,
C.
Persson
, and
A.
Zunger
,
Matter
1
,
280
294
(
2019
).
2.
A.
Janotti
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
87
,
122102
(
2005
).
3.
A.
Janotti
,
J. B.
Varley
,
M.
Choi
, and
C. G.
Van de Walle
,
Phys. Rev. B
90
,
085202
(
2014
).
4.
A.
Magnéli
,
Acta Chem. Scand.
7
,
315
324
(
1953
).
5.
M. J.
Sienko
and
S. M.
Morehouse
,
Inorg. Chem.
2
,
485
489
(
1963
).
6.
J. B.
Goodenough
, “Transition-metal oxides with metallic conductivity,”
Bull. Soc. Chim. Fr.
4
,
1200
1207
(
1965
); available at https://www.osti.gov/biblio/4616194.
7.
M. R.
Skokan
,
W. G.
Moulton
, and
R. C.
Morris
,
Phys. Rev. B
20
,
3670
3677
(
1979
).
8.
A.
Hussain
,
R.
Gruehn
, and
C. H.
Rüscher
,
J. Alloys Compd.
246
,
51
61
(
1997
).
9.
S. K.
Deb
,
Philos. Mag.
27
,
801
822
(
1973
).
10.
M.
Okada
,
K.
Ono
,
S.
Yoshio
,
H.
Fukuyama
, and
K.
Adachi
,
J. Am. Ceram. Soc.
102
,
5386
5400
(
2019
).
11.
K.
Machida
,
M.
Okada
, and
K.
Adachi
,
J. Appl. Phys.
125
,
103103
(
2019
).
12.
S.
Yoshio
and
K.
Adachi
,
Mater. Res. Exp.
6
,
026548
(
2019
).
13.
L.
Kang
,
W.
Xu
,
K.
Wang
,
W.
Liang
,
X.
Liu
,
F.
Gao
,
A.
Lan
,
Y.
Yang
, and
Y.
Gao
,
Sol. Energy Mater. Sol. Cells
128
,
184
(
2014
).
14.
S.
Nakakura
,
A. F.
Arif
,
K.
Machida
,
K.
Adachi
, and
T.
Ogi
,
Inorg. Chem.
58
,
9101
9107
(
2019
).
15.
S.
Yoshio
,
M.
Wakabayashi
, and
K.
Adachi
,
RSC Adv.
10
,
10491
10501
(
2020
).
16.
J.
Oi
,
A.
Kishimoto
, and
T.
Kudo
,
J. Solid State Chem.
103
,
176
185
(
1993
).
17.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
18.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
19.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
561
(
1993
).
20.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
21.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
, “Linear optical properties in the projector-augmented wave methodology,”
Phys. Rev. B
73
, 045112 (
2006
).
22.
K.
Manthiram
and
A. P.
Alivisatos
,
J. Am. Chem. Soc.
134
,
3995
3998
(
2012
).
23.
Y.
Sato
,
M.
Terauchi
, and
K.
Adachi
,
J. Appl. Phys.
112
,
074308
(
2012
).
24.
Y. K.
Sato
,
M.
Terauchi
, and
K.
Adachi
,
J. Appl. Phys.
126
,
185107
(
2019
).
25.
S. D.
Lounis
,
E. L.
Runnerstrom
,
A.
Llordés
, and
D. J.
Milliron
,
J. Phys. Chem. Lett.
5
,
1564
1574
(
2014
).
26.
L.
Tegg
,
D.
Cuskelly
, and
V. J.
Keast
,
Mater. Res. Exp.
4
,
065703
(
2017
).
27.
W.
Guo
,
C.
Guo
,
N.
Zheng
,
T.
Sun
, and
S.
Liu
,
Adv. Mater.
29
,
1604157
(
2017
).
28.
S.
Yoshio
,
M.
Okada
, and
K.
Adachi
,
J. Appl. Phys.
124
,
063109
(
2018
).
29.
O. F.
Schirmer
,
V.
Wittwer
,
G.
Baur
, and
G.
Brandt
,
J. Electrochem. Soc.
124
,
749
753
(
1977
).
30.
E.
Salje
and
B.
Güttler
,
Philos. Mag. B
50
,
607
620
(
1984
).
31.
G. A.
Niklasson
,
J.
Klasson
, and
E.
Olsson
,
Electrochim. Acta
46
,
1967
1971
(
2001
).
32.
N.
Bondarenko
,
O.
Eriksson
, and
N. V.
Skorodumova
,
Phys. Rev. B
92
,
165119
(
2015
).
33.
K.
Adachi
and
T.
Asahi
,
J. Mater. Res.
27
,
965
970
(
2012
).
34.
G.
Hollinger
,
P.
Pertosa
,
J. P.
Doumerc
,
F. J.
Himpsel
, and
B.
Reihl
,
Phys. Rev. B
32
,
1987
1991
(
1985
).
35.
J. H.
Davies
and
J. R.
Franz
,
Phys. Rev. Lett.
57
,
475
478
(
1986
).
36.
S.
Raj
,
D.
Hashimoto
,
H.
Matsui
,
S.
Souma
,
T.
Sato
,
T.
Takahashi
,
D. D.
Sarma
,
P.
Mahadevan
, and
S.
Oishi
,
Phys. Rev. Lett.
96
,
147603
(
2006
).
37.
J.
Ranninger
and
U.
Thibblin
,
Phys. Rev. B
45
,
7730
7738
(
1992
).
38.
H.
Löwen
,
Phys. Rev. B
37
,
8661
8667
(
1988
).
39.
M.
Pollak
,
Discuss. Faraday Soc.
50
,
13
19
(
1970
).
40.
A. L.
Efros
and
B. I.
Shklovskii
,
J. Phys. C Solid State Phys.
8
,
L49
L51
(
1975
).
41.
M.
Lee
,
J. G.
Massey
,
V. L.
Nguyen
, and
B. I.
Shklovskii
,
Phys. Rev. B
60
,
1582
1591
(
1999
).
42.
S.
Oshio
,
M.
Yamamoto
,
J.
Kuwata
, and
T.
Matsuoka
,
J. Appl. Phys.
71
,
3471
3478
(
1992
).
43.
B.
Gerand
,
G.
Nowogrocki
,
J.
Guenot
, and
M.
Figlarz
,
J. Solid State Chem.
29
,
429
434
(
1979
).
44.
L.
Seguin
,
B.
Gérand
,
G.
Chevrier
, and
M.
Touboul
,
Mater. Sci. Forum
228–231
,
695
700
(
1996
).
45.
K. P.
Reis
,
E.
Prince
, and
M. S.
Whittingham
,
Chem. Mater.
4
,
307
312
(
1992
).
46.
R. J.
Cava
,
R. S.
Roth
,
T.
Siegrist
,
B.
Hessen
,
J. J.
Krajewski
, and
W. F.
Peck
, Jr.
,
J. Solid State Chem.
103
,
359
365
(
1993
).
47.
P. G.
Dickens
,
J. H.
Moore
, and
D. J.
Neild
,
J. Solid State Chem.
7
,
241
244
(
1973
).
48.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
49.
G. A.
de Wijs
and
R. A.
de Groot
,
Phys. Rev. B
60
,
16463
16474
(
1999
).
50.
K.
Sato
,
I.
Ando
,
S.
Yoshio
, and
K.
Adachi
,
J. Appl. Phys.
130
,
113102
(
2021
).

Supplementary Material

You do not currently have access to this content.