We propose the design of a tubular phononic crystal (TPC) for the purpose of sensing the physical properties of a liquid filling the hollow part of the tube. The TPC is constituted by a periodic repetition of washers along a hollow pipe with the advantage of avoiding any perturbation of a flowing fluid by any element inside the tube. Using finite element simulations, we demonstrate the existence of complete as well as polarization dependent bandgaps inside which one can design localized modes associated with defects. The most sensitive cavity to the liquid sound velocity is found to be constituted by a Fabry–Pérot (F–P) cavity. The signature of the cavity modes can be detected as peaks or dips in the transmission spectrum as well as at the external surface of the cavity. We study the dramatic effect of the liquid viscosity, more particularly shear viscosity, on these features and discuss the conditions for their practical observation. A TPC test sample made of a polymer is fabricated by means of 3D printing and characterized without the liquid by transmission measurements. The comparison with the simulations showed the necessity of considering the damping of the polymer whose effect on the transmission features is discussed. Our sensor design can find many applications at different scales in several systems transporting a fluid as microfluidic channels in micro- and nanotechnologies, syringes in medicine, or pipelines in civil engineering.

1.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
,
Phys. Rev. Lett.
71
,
2022
(
1993
).
2.
A.
Khelif
and
A.
Adibi
, eds,
Phononic Crystals Fundamentals and Applications
(
Springer-Verlag
,
New York
,
2016
).
3.
V.
Laude
,
Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves
(
Walter de Gruyter GmbH & Co KG
,
2015
).
4.
Y.
Pennec
,
J. O.
Vasseur
,
B.
Djafari-Rouhani
,
L.
Dobrzyński
, and
P. A.
Deymier
,
Surf. Sci. Rep.
65
,
229
(
2010
).
5.
Y.
Pennec
,
Y.
Jin
, and
B.
Djafari-Rouhani
, in
Advances in Applied Mechanics
, edited by
M. I.
Hussein
(
Elsevier
,
2019
), pp.
105
145
.
6.
F.
Lucklum
,
Meas. Sci. Technol.
32
,
085108
(
2021
).
7.
A. A.
Shehatah
and
A.
Mehaney
,
Mater. Res. Express
6
,
125556
(
2020
).
8.
A.
Oseev
,
N.
Mukhin
,
R.
Lucklum
,
M.
Zubtsov
,
M.-P.
Schmidt
,
U.
Steinmann
,
A.
Fomin
,
A.
Kozyrev
, and
S.
Hirsch
,
Sens. Actuators B: Chem.
257
,
469
(
2018
).
9.
A.
Sato
,
Y.
Pennec
,
N.
Shingne
,
T.
Thurn-Albrecht
,
W.
Knoll
,
M.
Steinhart
,
B.
Djafari-Rouhani
, and
G.
Fytas
,
ACS Nano
4
,
3471
(
2010
).
10.
K. K.
Kanazawa
and
J. G.
Gordon
,
Anal. Chem.
57
,
1770
(
1985
).
11.
B. O.
Alunda
and
Y. J.
Lee
,
Sensors
20
,
4784
(
2020
).
12.
Y. T.
Yang
,
C.
Callegari
,
X. L.
Feng
,
K. L.
Ekinci
, and
M. L.
Roukes
,
Nano Lett.
6
,
583
(
2006
).
13.
R.
Kazys
,
R.
Sliteris
,
R.
Raisutis
,
E.
Zukauskas
,
A.
Vladisauskas
, and
L.
Mazeika
,
Appl. Phys. Lett.
103
,
204102
(
2013
).
14.
F.
Simonetti
,
P.
Cawley
, and
A.
Demčenko
,
J. Acoust. Soc. Am.
118
,
832
(
2005
).
15.
R.
Lucklum
and
J.
Li
,
Meas. Sci. Technol.
20
,
124014
(
2009
).
16.
S.
Villa-Arango
,
R.
Torres
,
P. A.
Kyriacou
, and
R.
Lucklum
,
Measurement
102
,
20
(
2017
).
17.
F.
Khateib
,
A.
Mehaney
,
R. M.
Amin
, and
A. H.
Aly
,
Phys. Scr.
95
,
075704
(
2020
).
18.
R.
Lucklum
,
M.
Ke
, and
M.
Zubtsov
,
Sens. Actuators B: Chem.
171–172
,
271
(
2012
).
19.
S.
Amoudache
,
Y.
Pennec
,
B.
Djafari Rouhani
,
A.
Khater
,
R.
Lucklum
, and
R.
Tigrine
,
J. Appl. Phys.
115
,
134503
(
2014
).
20.
H.
Gharibi
,
A.
Mehaney
, and
A.
Bahrami
,
J. Phys. D: Appl. Phys.
54
,
015304
(
2020
).
21.
A.
Cicek
,
D.
Trak
,
Y.
Arslan
,
N.
Korozlu
,
O. A.
Kaya
, and
B.
Ulug
,
ACS Sens.
4
,
1761
(
2019
).
22.
R.
Lucklum
,
M.
Zubtsov
, and
M.
Ke
, in
2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings
(
IEEE
,
2011
), pp.
1
4
.
23.
M.
Ke
,
M.
Zubtsov
, and
R.
Lucklum
,
J. Appl. Phys.
110
,
026101
(
2011
).
24.
S. E.
Zaki
,
A.
Mehaney
,
H. M.
Hassanein
, and
A. H.
Aly
,
Sci. Rep.
10
,
17979
(
2020
).
25.
S.
Amoudache
,
R.
Moiseyenko
,
Y.
Pennec
,
B. D.
Rouhani
,
A.
Khater
,
R.
Lucklum
, and
R.
Tigrine
,
J. Appl. Phys.
119
,
114502
(
2016
).
26.
Y.
Jin
,
Y.
Pennec
,
Y.
Pan
, and
B.
Djafari-Rouhani
,
Crystals
6
,
64
(
2016
).
27.
T.-T.
Wang
,
Y.-F.
Wang
,
Y.-S.
Wang
, and
V.
Laude
,
Appl. Phys. Lett.
111
,
041906
(
2017
).
28.
J.
Bonhomme
,
M.
Oudich
,
B.
Djafari-Rouhani
,
F.
Sarry
,
Y.
Pennec
,
B.
Bonello
,
D.
Beyssen
, and
P. G.
Charette
,
Appl. Phys. Lett.
114
,
013501
(
2019
).
29.
R.
Lucklum
,
M.
Zubtsov
, and
A.
Oseev
,
Anal. Bioanal. Chem.
405
,
6497
(
2013
).
30.
N.-N.
Huang
,
Y.-C.
Chung
,
H.-T.
Chiu
,
J.-C.
Hsu
,
Y.-F.
Lin
,
C.-T.
Kuo
,
Y.-W.
Chang
,
C.-Y.
Chen
, and
T.-R.
Lin
,
Crystals
10
,
421
(
2020
).
31.
T.-X.
Ma
,
Y.-S.
Wang
,
C.
Zhang
, and
X.-X.
Su
,
Sens. Actuators A: Phys.
242
,
123
(
2016
).
32.
G.
Sharma
,
S.
Kumar
, and
V.
Singh
,
Acoust. Phys.
63
,
159
(
2017
).
33.
R.
Lucklum
,
M.
Zubtsov
, and
Y.
Pennec
,
Procedia Eng.
120
,
520
(
2015
).
34.
H.
Shen
,
J.
Wen
,
D.
Yu
, and
X.
Wen
,
J. Sound Vib.
328
,
57
(
2009
).
35.
J.
Plisson
,
A.
Pelat
,
F.
Gautier
,
V. R.
Garcia
, and
T.
Bourdon
,
Appl. Phys. Lett.
116
,
201902
(
2020
).
36.
T.
Liu
,
L.-L.
Xu
,
H.
Liu
,
Y.-X.
Fan
, and
Z.-Y.
Tao
,
AIP Adv.
10
,
095109
(
2020
).
37.
J.
Jung
,
C.-H.
Jeong
, and
J. S.
Jensen
,
Appl. Phys. Lett.
115
,
041903
(
2019
).
38.
M.
Xiao
,
G.
Ma
,
Z.
Yang
,
P.
Sheng
,
Z. Q.
Zhang
, and
C. T.
Chan
,
Nat. Phys.
11
,
240
(
2015
).
39.
C. J.
Burton
,
J. Acoust. Soc. Am.
20
,
186
(
1948
).
40.
J.
Li
and
J. L.
Rose
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
1720
(
2002
).
41.
A. S.
Dukhin
and
P. J.
Goetz
,
J. Chem. Phys.
130
,
124519
(
2009
).
42.
A. O.
Krushynska
,
F.
Bosia
, and
N. M.
Pugno
, arXiv:1712.06063 [Cond-Mat, Physics:Physics] (
2017
).

Supplementary Material

You do not currently have access to this content.