Controlling magnetic damping lies at the heart of spintronic applications. In particular, manipulating the radiative damping of magnons is important for the emerging dissipative magnon–photon coupling and, therefore, opens up possibilities for advanced hybrid magnonic devices, nonreciprocal transmission, and topological information processing. The materials or structures that produce magnon modes can be further enriched with an artificial magnon mode produced in a complementary electric inductive–capacitive (CELC) resonator due to its flexible tunability, miniaturized size, and easy integration. Here, we explore the radiative linewidth broadening and frequency shifts of a CELC resonator in an on-chip coplanar waveguide in a self-interfering configuration. The radiative dynamics depends on the magnetic component of the local density of photon states, as well as the intensity, polarization, and boundary conditions. In particular, a voltage-controlled phase shifter was integrated to demonstrate voltage-controlled radiative damping. Adopting both the CELC resonator and its complementary structure may be an effective tool for obtaining the spatial distribution of the electric and magnetic components of microwaves. Our work is a general approach to manipulating the radiative damping of magnetic resonance, which has the potential for on-chip functional devices based on dissipative magnon–photon interactions.

1.
I.
Barsukov
,
H. K.
Lee
,
A. A.
Jara
,
Y.-J.
Chen
,
A. M.
Goncalves
,
J. A.
Katine
,
R. E.
Arias
,
B. A.
Ivanov
, and
I. N.
Krivorotov
, “
Giant nonlinear damping in nanoscale ferromagnets
,”
Sci. Adv.
5
,
eaav6943
(
2019
).
2.
B.
Divinsy
,
S.
Urazhdin
,
S. O.
Demokritov
, and
V. E.
Demidov
, “
Controlled nonlinear magnetic damping in spin-Hall nano-devices
,”
Nat. Commun.
10
,
467
(
2019
).
3.
A.
Bienfait
,
J. J.
Pla
,
Y.
Kubo
,
X.
Zhou
,
M.
Stern
,
C. C.
Lo
,
C. D.
Weis
,
T.
Schenkel
,
D.
Vion
,
D.
Esteve
,
J. J. L.
Morton
, and
P.
Bertet
, “
Controlling spin relaxation with a cavity
,”
Nature
531
,
74
77
(
2016
).
4.
Z. L.
Cheng
,
A. A.
Zaki
,
J. Z.
Hui
,
V. R.
Muzykantov
, and
A.
Tsourkas
, “
Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities
,”
Science
338
(
6109
),
903
910
(
2012
).
5.
L. Q.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin torque switching with the giant spin Hall effect of tantalum
,”
Science
336
(
6081
),
555
558
(
2012
).
6.
X. F.
Zhang
,
C.-L.
Zou
,
N.
Zhu
,
F.
Marquardt
,
L.
Jiang
, and
H. X.
Tang
, “
Magnon dark modes and gradient memory
,”
Nat. Commun.
6
,
014001
(
2015
).
7.
J.
Zhu
,
J. A.
Katine
,
G. E.
Rowlands
,
Y.-J.
Chen
,
Z.
Duan
,
J. G.
Alzate
,
P.
Upadhyaya
,
J.
Langer
,
P. K.
Amiri
,
K. L.
Wang
, and
I. N.
Krivorotov
, “
Voltage-induced ferromagnetic resonance in magnetic tunnel junctions
,”
Phys. Rev. Lett.
108
,
197203
(
2012
).
8.
S.
Miwa
,
S.
Ishibashi
,
H.
Tomita
,
T.
Nozaki
,
E.
Tamura
,
K.
Ando
,
N.
Mizuochi
,
T.
Saruya
,
H.
Kubota
,
K.
Yakushiji
,
T.
Taniguchi
,
H.
Imamura
,
A.
Fukushima
,
S.
Yuasa
, and
Y.
Suzuki
, “
Highly sensitive nanoscale spin-torque diode
,”
Nat. Mater.
13
,
50
56
(
2014
).
9.
B.
Fang
,
M.
Carpentieri
,
X.
Hao
,
H.
Jiang
,
J. A.
Katine
,
I. N.
Krivorotov
,
B.
Ocker
,
J.
Langer
,
K. L.
Wang
,
B.
Zhang
,
B.
Azzerboni
,
P. K.
Amiri
,
G.
Finocchio
, and
Z.
Zeng
, “
Giant spin-torque diode sensitivity in the absence of bias magnetic field
,”
Nat. Commun.
7
,
2472
(
2016
).
10.
A. N.
Cleland
,
Foundations of Nanomechanics
(
Springer-Verlag
,
Berlin
,
2003
).
11.
H.
Huebl
,
C. W.
Zollitsch
,
J.
Lotze
,
F.
Hocke
,
M.
Greifenstein
,
A.
Marx
,
R.
Gross
, and
S. T. B.
Goennenwein
, “
High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids
,”
Phys. Rev. Lett.
111
,
127003
(
2013
).
12.
X. F.
Zhang
,
C.-L.
Zou
,
L.
Jiang
, and
H. X.
Tang
, “
Strongly coupled magnons and cavity microwave photons
,”
Phys. Rev. Lett.
113
,
156401
(
2014
).
13.
L. H.
Bai
,
M.
Harder
,
Y. P.
Chen
,
X.
Fan
,
J. Q.
Xiao
, and
C.-M.
Hu
, “
Spin pumping in electrodynamically coupled magnon-photon systems
,”
Phys. Rev. Lett.
114
,
227201
(
2015
).
14.
M.
Goryachev
,
W. G.
Farr
,
D. L.
Creedon
,
Y.
Fan
,
M.
Kostylev
, and
M. E.
Tobar
, “
High-cooperativity cavity QED with magnons at microwave frequencies
,”
Phys. Rev. Appl.
2
,
054002
(
2014
).
15.
J.
Rao
,
S.
Kaur
,
B.
Yao
,
E.
Edwards
,
Y.
Zhao
,
X.
Fan
,
D.
Xue
,
T.
Silva
,
Y.
Gui
, and
C.-M.
Hu
, “
Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device
,”
Nat. Commun.
10
,
159
(
2019
).
16.
M.
Harder
,
Y.
Yang
,
B. M.
Yao
,
C. H.
Yu
,
J. W.
Rao
,
Y. S.
Gui
,
R. L.
Stamps
, and
C.-M.
Hu
, “
Level attraction due to dissipative magnon-photon coupling
,”
Phys. Rev. Lett.
121
,
137203
(
2018
).
17.
I.
Boventer
,
C.
Dörflinger
,
T.
Wolz
,
R.
Macêdo
,
R.
Lebrun
,
M.
Kläui
, and
M.
Weides
, “
Control of the coupling strength and linewidth of a cavity magnon-polariton
,”
Phys. Rev. Res.
2
,
013154
(
2020
).
18.
W.
Yu
,
J.
Wang
,
H. Y.
Yuan
, and
J.
Xiao
, “
Prediction of attractive level crossing via a dissipative mode
,”
Phys. Rev. Lett.
123
,
227201
(
2019
).
19.
Y.-P.
Wang
,
J. W.
Rao
,
Y.
Yang
,
P.-C.
Xu
,
Y. S.
Gui
,
B. M.
Yao
,
J. Q.
You
, and
C.-M.
Hu
, “
Nonreciprocity and unidirectional invisibility in cavity magnonics
,”
Phys. Rev. Lett.
123
,
127202
(
2019
).
20.
Y.-P.
Wang
and
C.-M.
Hu
, “
Dissipative couplings in cavity magnonics
,”
J. Appl. Phys.
127
,
130901
(
2020
).
21.
B.
Bhoi
,
B.
Kim
,
S.-H.
Jang
,
J.
Kim
,
J.
Yang
,
Y.-J.
Cho
, and
S.-K.
Kim
, “
Abnormal anticrossing effect in photon-magnon coupling
,”
Phys. Rev. B
99
,
134426
(
2019
).
22.
T.
Yu
,
Y.-X.
Zhang
,
S.
Sharma
,
X.
Zhang
,
Y. M.
Blanter
, and
G. E. W.
Bauer
, “
Magnon accumulation in chirally coupled magnets
,”
Phys. Rev. Lett.
124
,
107202
(
2020
).
23.
J. W.
Rao
,
Y. P.
Wang
,
Y.
Yang
,
T.
Yu
,
Y. S.
Gui
,
X. L.
Fan
,
D. S.
Xue
, and
C.-M.
Hu
, “
Interactions between a magnon mode and a cavity photon mode mediated by traveling photons
,”
Phys. Rev. B
101
,
064404
(
2020
).
24.
K. H.
Drexhage
,
H.
Kuhn
, and
F. P.
Schäfer
, “
Variation of the fluorescence decay time of a molecule in front of a mirror
,”
Bunsen Ges. Phys. Chem.
72
,
329
(
1968
).
25.
K. H.
Drexhage
, “
Influence of a dielectric interface on fluorescence decay time
,”
J. Lumin.
1
,
693
(
1970
).
26.
L.
Langguth
,
R.
Fleury
,
A.
Alù
, and
A. F.
Koenderink
, “
Drexhage’s experiment for sound
,”
Phys. Rev. Lett.
116
,
224301
(
2016
).
27.
S.
Kaur
,
B.
Yao
,
Y.-S.
Gui
, and
C.-M.
Hu
, “
On-chip artificial magnon-polariton device for voltage control of electromagnetically induced transparency
,”
J. Phys. D: Appl. Phys.
49
,
475103
(
2016
).
28.
T. H.
Hand
,
J.
Gollub
,
S.
Sajuyigbe
,
D. R.
Smith
, and
S. A.
Cummer
, “
Characterization of complementary electric field coupled resonant surfaces
,”
Appl. Phys. Lett.
93
,
212504
(
2008
).
29.
D.
Schurig
,
J. J.
Mock
, and
D. R.
Smith
, “
Electric-field-coupled resonators for negative permittivity metamaterials
,”
Appl. Phys. Lett.
88
,
041109
(
2006
).
30.
J.
Hunt
,
T.
Driscoll
,
A.
Mrozack
,
G.
Lipworth
,
M.
Reynolds
,
D.
Brady
, and
D. R.
Smith
, “
Metamaterial apertures for computational imaging
,”
Science
339
,
310
313
(
2013
).
31.
G.
Lipworth
,
A.
Rose
,
O.
Yurduseven
,
V. R.
Gowda
,
M. F.
Imani
,
H.
Odabasi
,
P.
Trofatter
,
J.
Gollub
, and
D. R.
Smith
, “
Comprehensive simulation platform for a metamaterial imaging system
,”
Appl. Opt.
54
(
31
),
9343
9353
(
2015
).
32.
G.
Lipworth
,
N. W.
Caira
,
S.
Larouche
, and
D. R.
Smith
, “
Phase and magnitude constrained metasurface holography at W-band frequencies
,”
Opt. Express
24
(
17
),
19372
(
2016
).
33.
L. P.
Mancera
,
T.
Fromenteze
,
T.
Sleasman
,
M.
Boyarsky
,
M. F.
Imani
,
M.
Reynolds
, and
D.
Smith
, “
Application of range migration algorithms to imaging with a dynamic metasurface antenna
,”
J. Opt. Soc. Am. B
33
(
10
),
2082
2092
(
2016
).
34.
T.
Sleasman
,
M.
Boyarsky
,
L. P.
Mancera
,
T.
Fromenteze
,
M. F.
Imani
,
M. S.
Reynolds
, and
D. R.
Smith
, “
Experimental synthetic aperture radar with dynamic metasurfaces
,”
IEEE Trans. Antennas Propag.
65
(
12
),
6864
6877
(
2017
).
35.
J. W.
Rao
,
S.
Kaur
,
X. L.
Fan
,
D. S.
Xue
,
B. M.
Yao
,
Y. S.
Gui
, and
C.-M.
Hu
, “
Characterization of the non-resonant radiation damping in coupled cavity photon magnon system
,”
Appl. Phys. Lett.
110
,
262404
(
2017
).
36.
B. M.
Yao
,
T.
Yu
,
Y. S.
Gui
,
J. W.
Rao
,
Y. T.
Zhao
,
W.
Lu
, and
C.-M.
Hu
, “
Coherent control of magnon radiative damping with local photon states
,”
Commun. Phys.
2
,
107
(
2019
).
37.
Y.
Yang
,
Y.-P.
Wang
,
J. W.
Rao
,
Y. S.
Gui
,
B. M.
Yao
,
W.
Lu
, and
C.-M.
Hu
, “
Unconventional singularity in anti-parity-time symmetric cavity magnonics
,”
Phys. Rev. Lett.
125
,
147202
(
2020
).
38.
S.
Kaur
,
B.
Yao
,
Y.-S.
Gui
, and
C.-M.
Hu
, “
On-chip artificial magnon-polariton device for voltage control of electromagnetically induced transparency
,”
J. Phys. D: Appl. Phys.
49
,
475103
(
2016
).
39.
B.
Kanté
,
A.
Lustrac
,
J.-M.
Lourtioz
, and
S. N.
Burokur
, “
Infrared cloaking based on the electric response of split ring resonators
,”
Opt. Express
16
,
9191
9198
(
2008
).

Supplementary Material

You do not currently have access to this content.