Nanoparticles of manganese cobalt oxide (MnCo2O4) have been prepared with the hydrothermal method, while nanocomposites of MnCo2O4/polypyrrole (MCO/PPy) have been prepared by dispersing MCO nanoparticles in the PPy matrix by an in situ chemical polymerization method. MCO/PPy nanocomposites' structural characterizations were made by x-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). XRD and FESEM analyses give evidence that MCO nanoparticles are dispersed uniformly, and there is an effect on crystallinity and particle size. The observed shift in the stretching vibrations of Fourier transform infrared spectra for MCO/PPy nanocomposites confirms the interaction between MCO nanoparticles and PPy. Furthermore, the temperature-dependent (300–453 K) DC conductivity measurements of MCO/PPy nanocomposites depict the presence of different conduction mechanisms. The conductivity data are well fitted by the 3D variable range hopping (3D-VRH) model and the band conduction model at low and high temperatures. The characteristic temperature (T0) calculated from the 3D-VRH and the activation energy (Ea) calculated from the band conduction model support the observed highest conductivity for the 10 wt. % MCO/PPy nanocomposite.

1.
S.
Li
,
M.
Meng Lin
,
M. S.
Toprak
,
D. K.
Kim
, and
M.
Muhammed
,
Nano Rev.
1
(
1
),
5214
(
2010
).
2.
F.
Wang
,
X.
Lv
,
L.
Zhang
,
H.
Zhang
,
Y.
Zhu
,
Z.
Hu
, and
W.
Jiang
,
J. Power Sources
393
,
169
(
2018
).
3.
G.
Li
,
L.
Xu
,
Y.
Zhai
, and
Y.
Hou
,
J. Mater. Chem. A
3
(
27
),
14298
(
2015
).
4.
K.-N.
Jung
,
S. M.
Hwang
,
M.-S.
Park
,
K. J.
Kim
,
J.-G.
Kim
,
S. X.
Dou
, and
J.-W.
Lee
,
Sci. Rep.
5
(
1
),
7665
(
2015
).
5.
V.
Venkatachalam
,
A.
Alsalme
,
A.
Alghamdi
, and
R.
Jayavel
,
J. Electroanal. Chem.
759
,
94
(
2015
).
6.
N. A.
Anderson
,
E.
Hao
,
X.
Ai
,
G.
Hastings
, and
T.
Lian
,
Chem. Phys. Lett.
347
(
4–6
),
304
(
2001
).
7.
P.
Chandrasekhar
,
Conducting Polymers, Fundamentals, and Applications: A Practical Approach
(
Springer Science + Business Media
,
New York
,
1999
).
8.
M. V.
Murugendrappa
,
S.
Khasim
, and
M. V. N.
Ambika Prasad
,
Bull. Mater. Sci.
28
(
6
),
565
(
2005
).
9.
N. Y.
Abu-Thabit
,
Electrically Conducting Polyaniline Smart Coatings and Thin Films for Industrial Applications. Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications
(
Elsevier Inc.
,
2020
), Chap. 22, p. 58517.
10.
K. J.
Wynne
and
G. B.
Street
,
Macromolecules
18
(
12
),
2361
(
1985
).
11.
U.
Holzwarth
and
N.
Gibson
,
Nat. Nanotechnol.
6
(
9
),
534
(
2011
).
12.
V. D.
Mote
,
Y.
Purushotham
, and
B.
Dole
,
J. Theor. Appl. Phys.
6
(
1
),
6
(
2012
).
13.
A. M. P.
Hussain
,
A.
Kumar
,
D.
Saikia
,
F.
Singh
, and
D. K.
Avasthi
,
Nucl. Instrum. Meth. Phys. Res. Sect. B
240
,
871
(
2005
).
14.
H.
Li
,
Z.
Sun
,
Y.
Tian
,
G.
Cui
, and
S.
Yan
,
RSC Adv.
5
(
97
),
79765
(
2015
).
15.
S.
Valtera
,
J.
Prokeš
,
J.
Kopecká
,
M.
Vrňata
,
M.
Trchová
,
M.
Varga
, and
D.
Kopecký
,
RSC Adv.
7
(
81
),
51495
(
2017
).
16.
H.-M.
Xiao
and
S.-Y.
Fu
,
CrystEngComm
16
(
11
),
2097
(
2014
).
17.
L. J.
Huijbregts
,
Charge Transport and Morphology in Nanofillers and Polymer Nanocomposites
(
Technische Universiteit Eindhoven
,
2008
).
18.
M.
Wan
,
Conducting Polymers with Micro or Nanometer Structure
(
Tsinghua University Press
,
Beijing
,
2008
).
19.
M. N.
Gueye
,
A.
Carella
,
J.
Faure-Vincent
,
R.
Demadrille
, and
J.-P.
Simonato
,
Prog. Mater. Sci.
108,
100616
(
2019
).
20.
R.
Zhang
,
Y.
Bin
,
R.
Chen
, and
M.
Matsuo
,
Polym. J.
45
(
11
),
1120
(
2013
).
21.
J. L.
Brédas
,
J. C.
Scott
,
K.
Yakushi
, and
G. B.
Street
,
Phys. Rev. B
30
(
2
),
1023
(
1984
).
22.
R.
Gangopadhyay
,
A.
De
, and
S.
Das
,
J. Appl. Phys.
87
(
5
),
2363
(
2000
).
23.
R. A.
Sutar
,
L.
Kumari
, and
Murugendrappa
M. V.
,
J. Phys. Chem. C
124
,
21772
(
2020
).
You do not currently have access to this content.