Aiming at the problem of the need for trial-and-error in the design of the size of Fabry–Pérot (F–P) resonant absorbers, we start from the sound absorption caused by loss and propose a design method to accurately obtain the optimal size of F–P tubes with circular and rectangular cross sections. An innovative loss equation is constructed, which relates the F–P tube's critical loss to the transmission loss of sound waves in the tube. By solving the loss equation, the size of the F–P tube required for perfect sound absorption can be obtained. This method avoids the need for experiments or simulations to find the optimal size, and it is simple, fast, and accurate. Single-frequency perfect sound-absorbing metasurfaces of circular and rectangular cross sections were designed using this method. The performances of these metasurfaces were verified using theoretical, numerical, and experimental models. The three resulting sound absorption coefficient curves had good consistency and achieved perfect sound absorption at the target frequency. The feasibility and accuracy of the design method were established. The essence of the loss equation is to find the size of the F–P tube corresponding to the “zero” point on the real-frequency axis of the complex-frequency plane. The work in this paper is of guiding significance for determining the sizes of F–P tubes.

1.
J. P.
Arenas
and
M. J.
Crocker
, “
Recent trends in porous sound-absorbing materials
,”
Sound Vib.
44
(
7
),
12
17
(
2010
).
2.
M.
Yang
and
P.
Sheng
, “
Sound absorption structures: From porous media to acoustic metamaterials
,”
Annu. Rev. Mater. Res.
47
,
83
114
(
2017
).
3.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
2009
).
4.
C.
Wang
and
L.
Huang
, “
On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths
,”
J. Acoust. Soc. Am.
130
(
1
),
208
218
(
2011
).
5.
K.
Sakagami
,
T.
Nakamori
,
M.
Morimoto
, and
M.
Yairi
, “
Double-leaf microperforated panel space absorbers: A revised theory and detailed analysis
,”
Appl. Acoust.
70
(
5
),
703
709
(
2009
).
6.
S.
Huang
,
S.
Li
,
X.
Wang
, and
D.
Mao
, “
Micro-perforated absorbers with incompletely partitioned cavities
,”
Appl. Acoust.
126
,
114
119
(
2017
).
7.
D. Y.
Maa
, “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
(
5
),
2861
2866
(
1998
).
8.
Z. Y.
Liu
,
X. X.
Zhang
,
Y. W.
Mao
,
Y. Y.
Zhu
,
Z. Y.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
(
5485
),
1734
1736
(
2000
).
9.
J.
Li
,
W.
Wang
,
Y.
Xie
,
B.
Popa
, and
S.
Cummer
, “
A sound absorbing metasurface with coupled resonators
,”
Appl. Phys. Lett.
109
,
091908
(
2016
).
10.
N.
Jimenez
,
W.
Huang
,
V.
Romero-Garcia
,
V.
Pagneux
, and
J.
Groby
, “
Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption
,”
Appl. Phys. Lett.
109
,
12190212
(
2016
).
11.
S.
Huang
,
Z.
Zhou
,
D.
Li
,
T.
Liu
,
X.
Wang
,
J.
Zhu
, and
Y.
Li
, “
Compact broadband acoustic sink with coherently coupled weak resonances
,”
Sci. Bull.
65
(
5
),
373
379
(
2020
).
12.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
, “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
(
1
),
756
(
2012
).
13.
M.
Yang
,
C.
Meng
,
C.
Fu
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
, “
Subwavelength total acoustic absorption with degenerate resonators
,”
Appl. Phys. Lett.
107
,
104104
(
2015
).
14.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
(
9
),
873
878
(
2014
).
15.
L.
Liu
,
H.
Chang
,
C.
Zhang
, and
X.
Hu
, “
Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth
,”
Appl. Phys. Lett.
111
,
083503
(
2017
).
16.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
, “
Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
,”
Appl. Phys. Lett.
105
,
121901
(
2014
).
17.
C.
Chen
,
Z.
Du
,
G.
Hu
, and
J.
Yang
, “
A low-frequency sound absorbing material with subwavelength thickness
,”
Appl. Phys. Lett.
110
,
221903
(
2017
).
18.
Y.
Shen
,
Y.
Yang
,
X.
Guo
,
Y.
Shen
, and
D.
Zhang
, “
Low-frequency anechoic metasurface based on coiled channel of gradient cross-section
,”
Appl. Phys. Lett.
114
,
083501
(
2019
).
19.
C.
Zhang
and
X.
Hu
, “
Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability
,”
Phys. Rev. Appl.
6
(
6
),
064025
(
2016
).
20.
M.
Yang
,
S.
Chen
,
C.
Fuab
, and
P.
Shen
, “
Optimal sound-absorbing structures
,”
Mater. Horiz.
4
(
4
),
673
680
(
2017
).
21.
Y.
Han
,
X.
Wang
,
G.
Xie
, and
T.
Chen
, “
Low-frequency sound-absorbing metasurface with a channel of nonuniform cross section
,”
J. Appl. Phys.
127
,
064902
(
2020
).
22.
H.
Chang
,
L.
Liu
,
C.
Zhang
, and
X.
Hu
, “
Broadband high sound absorption from labyrinthine metasurfaces
,”
AIP Adv.
8
,
045115
(
2018
).
23.
B.
Zheng
,
J.
Yang
,
B.
Liang
, and
J.
Cheng
, “
Inverse design of acoustic metamaterials based on machine learning using a Gauss–Bayesian model
,”
J. Appl. Phys.
128
,
134902
(
2020
).
24.
L. E.
Kinsler
and
A. R.
Frey
,
Fundamentals of Acoustics
, 3rd ed. (
John Wiley & Sons
,
2000
).
25.
G.
Du
and
Z.
Zhu
,
Fundamentals of Acoustics
, 3rd ed. (
Nanjing University Press
,
2012
).
26.
X.
Peng
,
J.
Ji
, and
Y.
Jing
, “
Composite honeycomb metasurface panel for broadband sound absorption
,”
J. Acoust. Soc. Am.
144
(
4
),
EL255
(
2018
).
You do not currently have access to this content.