High-quality lattice-matched and mismatched strained GaAs1−xSbx (0.37 < x < 0.57) sub-micrometer epilayers are grown on InP by molecular beam epitaxy. Based on a heat conduction model regarding the heat transfer process between the thin GaAsSb films and thick InP substrates, the corresponding thermal conductivity of GaAsSb epilayers was accurately extracted from the power and temperature micro-Raman measurement. Combined with time-domain thermoreflectance measurements, we found that in comparison to the lattice-matched sample with Sb = 47.7%, a significant reduction in thermal conductivity of the lattice-mismatched sample with Sb = 37.9% and Sb = 56.2% is observed. With the help of diffraction reciprocal space maps and temperature-dependent photoluminescence results, the reduction in thermal conductivity is attributed to lattice-mismatch-induced biaxial tensile and compressive strain that can cause the breakage of the cubic crystal symmetry and provoke more defects.

1.
E.
Ahmad
,
M. R.
Karim
,
S. B.
Hafiz
,
C. L.
Reynolds
,
Y.
Liu
, and
S.
Iyer
, “
A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range
,”
Sci. Rep.
7
,
10111
(
2017
).
2.
D. L.
Dheeraj
,
G.
Patriarche
,
L.
Largeau
,
H. L.
Zhou
,
A. T.
van Helvoort
,
F.
Glas
,
J. C.
Harmand
,
B. O.
Fimland
, and
H.
Weman
, “
Zinc blende GaAsSb nanowires grown by molecular beam epitaxy
,”
Nanotechnology
19
,
275605
(
2008
).
3.
J.
Huh
,
D. C.
Kim
,
A. M.
Munshi
,
D. L.
Dheeraj
,
D.
Jang
,
G. T.
Kim
,
B. O.
Fimland
, and
H.
Weman
, “
Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients
,”
Nanotechnology
27
,
385703
(
2016
).
4.
L.
Ma
,
X.
Zhang
,
H.
Li
,
H.
Tan
,
Y.
Yang
,
Y.
Xu
,
W.
Hu
,
X.
Zhu
,
X.
Zhuang
, and
A.
Pan
, “
Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm
,”
Semicond. Sci. Technol.
30
,
105033
(
2015
).
5.
Z.
Li
,
X.
Yuan
,
L.
Fu
,
K.
Peng
, and
F.
Wang
, “
Room temperature GaAsSb single nanowire infrared photodetectors
,”
Nanotechnol
26
,
445202
(
2015
).
6.
W. Y.
Qiu
,
X. J.
Wang
,
P. P.
Chen
,
N.
Li
, and
W.
Lu
, “
Optical spin polarization and Hanle effect in GaAsSb: Temperature dependence
,”
Appl. Phys. Lett.
105
,
082104
(
2014
).
7.
B.
Zhang
,
C.
Chen
,
J.
Han
,
C.
Jin
,
J.
Chen
, and
X.
Wang
, “
Effect of thermal annealing on carrier localization and efficiency of spin detection in GaAsSb epilayers grown on InP
,”
AIP Adv.
8
,
045021
(
2018
).
8.
H.
Detz
,
P.
Klang
,
A. M.
Andrews
,
W.
Schrenk
, and
G.
Strasser
, “
Si doping of MBE grown bulk GaAsSb on InP
,”
J. Cryst. Growth
323
,
42
(
2011
).
9.
Y. M.
Lin
,
C. H.
Chen
,
J. S.
Wu
, and
C. P.
Lee
, “
Compositional grading in GaAsSb grown on GaAs substrates
,”
J. Cryst. Growth
402
,
151
(
2014
).
10.
H.
Takasugi
,
S.
Teraki
,
T.
Kurokawa
, and
I.
Aoki
, “Development of the thin film with high thermal conductivity for power devices,” in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, 27–30 May 2014 (IEEE, 2014).
11.
S.
Périchon
,
V.
Lysenko
,
B.
Remaki
,
D.
Barbier
, and
B.
Champagnon
, “
Measurement of porous silicon thermal conductivity by micro-Raman scattering
,”
J. Appl. Phys.
86
,
4700
(
1999
).
12.
J.
Anaya
,
S.
Rossi
,
M.
Alomari
,
E.
Kohn
, and
M.
Kuball
, “
Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties
,”
Acta Mater.
103
,
141
(
2016
).
13.
Y.
Lin
,
L.
Zheng
, and
G.
Chen
, “
Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation
,”
Powder Technol.
274
,
324
(
2015
).
14.
S.
Adachi
, “
Lattice thermal conductivity of group-IV and III–V semiconductor alloys
,”
J. Appl. Phys.
102
,
063502
(
2007
).
15.
X.
Li
,
K.
Maute
,
M. L.
Dunn
, and
R.
Yang
, “
Strain effects on the thermal conductivity of nanostructures
,”
Phys. Rev. B
81
,
245318
(
2010
).
16.
K. D.
Parrish
,
A.
Jain
,
J. M.
Larkin
,
W. A.
Saidi
, and
A. J. H.
McGaughey
, “
Origins of thermal conductivity changes in strained crystals
,”
Phys. Rev. B
90
,
235201
(
2014
).
17.
D.-S.
Tang
,
G.-Z.
Qin
,
M.
Hu
, and
B.-Y.
Cao
, “
Thermal transport properties of GaN with biaxial strain and electron-phonon coupling
,”
J. Appl. Phys.
127
,
035102
(
2020
).
18.
A.
Vega-Flick
,
D.
Jung
,
S.
Yue
,
J. E.
Bowers
, and
B.
Liao
, “
Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain
,”
Phys. Rev. Mater.
3
,
034603
(
2019
).
19.
J.
Zou
,
D.
Kotchetkov
,
A. A.
Balandin
,
D. I.
Florescu
, and
F. H.
Pollak
, “
Thermal conductivity of GaN films: Effects of impurities and dislocations
,”
J. Appl. Phys.
92
,
2534
(
2002
).
20.
K. F.
Murphy
,
B.
Piccione
,
M. B.
Zanjani
,
J. R.
Lukes
, and
D. S.
Gianola
, “
Strain- and defect-mediated thermal conductivity in silicon nanowires
,”
Nano Lett.
14
,
3785
(
2014
).
21.
A. X.
Levander
,
T.
Tong
,
K. M.
Yu
,
J.
Suh
,
D.
Fu
,
R.
Zhang
,
H.
Lu
,
W. J.
Schaff
,
O.
Dubon
,
W.
Walukiewicz
,
D. G.
Cahill
, and
J.
Wu
, “
Effects of point defects on thermal and thermoelectric properties of InN
,”
Appl. Phys. Lett.
98
,
012108
(
2011
).
22.
Y.
Liu
,
Y.
Chu
,
Y.
Lu
,
Y.
Li
,
S.
Li
,
C.
Jin
,
J.
Chen
, and
X.
Wang
, “
Lattice-optimized GaAsSb/InP heterojunction towards both efficient carrier confinement and thermal dissipation
,”
Phys. Status Solidi RRL
14
,
2000108
(
2020
).
23.
Y.
Yu
,
T.
Minhaj
,
L.
Huang
,
Y.
Yu
, and
L.
Cao
, “
In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides
,”
Phys. Rev. Appl.
13
,
034059
(
2020
).
24.
S.
Xu
,
A.
Fan
,
H.
Wang
,
X.
Zhang
, and
X.
Wang
, “
Raman-based nanoscale thermal transport characterization: A critical review
,”
Int. J. Heat Mass Transfer
154
,
119751
(
2020
).
25.
R.
Wang
,
T.
Wang
,
H.
Zobeiri
,
P.
Yuan
,
C.
Deng
,
Y.
Yue
,
S.
Xu
, and
X.
Wang
, “
Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation
,”
Nanoscale
10
,
23087
(
2018
).
26.
B.
Stoib
,
S.
Filser
,
N.
Petermann
,
H.
Wiggers
,
M.
Stutzmann
, and
M. S.
Brandt
, “
Thermal conductivity of mesoporous films measured by Raman spectroscopy
,”
Appl. Phys. Lett.
104
,
161907
(
2014
).
27.
X.
Liu
,
X.
Wu
, and
T.
Ren
, “
In situ and noncontact measurement of silicon membrane thermal conductivity
,”
Appl. Phys. Lett.
98
,
174104
(
2011
).
28.
B.
Sun
and
Y. K.
Koh
, “
Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR)
,”
Rev. Sci. Instrum.
87
,
064901
(
2016
).
29.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
,
5119
(
2004
).
30.
S.
Kerdsongpanya
,
B.
Sun
,
F.
Eriksson
,
J.
Jensen
,
J.
Lu
,
Y. K.
Koh
,
N. V.
Nong
,
B.
Balke
,
B.
Alling
, and
P.
Eklund
, “
Experimental and theoretical investigation of Cr1–xScxN solid solutions for thermoelectrics
,”
J. Appl. Phys.
120
,
215103
(
2016
).
31.
J.
Ju
,
B.
Sun
,
G.
Haunschild
,
B.
Loitsch
,
B.
Stoib
,
M. S.
Brandt
,
M.
Stutzmann
,
Y. K.
Koh
, and
G.
Koblmüller
, “
Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices
,”
AIP Adv.
6
,
045216
(
2016
).
32.
N. M.
Wight
,
E.
Acosta
,
R. K.
Vijayaraghavan
,
P. J.
McNally
,
V.
Smirnov
, and
N. S.
Bennett
, “
A universal method for thermal conductivity measurements on micro-/nano-films with and without substrates using micro-Raman spectroscopy
,”
Therm. Sci. Eng. Prog.
3
,
95
(
2017
).
33.
J.
Jaramillo-Fernandez
,
E.
Chavez-Angel
, and
C. M.
Sotomayor-Torres
, “
Raman thermometry analysis: Modelling assumptions revisited
,”
Appl. Therm. Eng.
130
,
1175
(
2018
).
34.
C. J.
Glassbrenner
and
G. A.
Slack
, “
Thermal conductivity of silicon and germanium from 3 K to the melting point
,”
Phys. Rev.
134
,
A1058
(
1964
).
35.
S.
Huang
,
X.
Ruan
,
J.
Zou
,
X.
Fu
, and
H.
Yang
, “
Thermal conductivity measurement of submicrometer-scale silicon dioxide films by an extended micro-Raman method
,”
Microsyst. Technol.
15
,
837
(
2009
).
36.
K. J.
Negus
,
M. M.
Yovanovich
, and
J. C.
Thompson
, “
Constriction resistance of circular contacts on coated surfaces: Effect of boundary conditions
,”
J. Thermophys. Heat Transfer
2
,
158
(
1988
).
37.
R.
Cohen
,
M.
Cherng
,
R.
Benner
, and
G.
Stringfellow
, “
Raman and photoluminescence spectra of GaAsSb
,”
J. Appl. Phys.
57
,
4817
(
1985
).
38.
A.
Sood
,
J. A.
Rowlette
,
C. G.
Caneau
,
E.
Bozorg-Grayeli
,
M.
Asheghi
, and
K. E.
Goodson
, “
Thermal conduction in lattice-matched superlattices of InGaAs/InAlAs
,”
Appl. Phys. Lett.
105
,
051909
(
2014
).
39.
H.-Q.
Nguyen
,
E. Y.
Chang
,
H.-W.
Yu
,
H.-D.
Trinh
,
C.-F.
Dee
,
Y.-Y.
Wong
,
C.-H.
Hsu
,
B.-T.
Tran
, and
C.-C.
Chung
, “
Threading dislocation blocking in metamorphic InGaAs/GaAs for growing high-quality In0.5Ga0.5As and In0.3Ga0.7As on GaAs substrate by using metal organic chemical vapor deposition
,”
Appl. Phys. Express
5
,
055503
(
2012
).
40.
R.
Lukic-Zrnic
,
B. P.
Gorman
,
R. J.
Cottier
,
T. D.
Golding
,
C. L.
Littler
, and
A. G.
Norman
, “
Temperature dependence of the band gap of GaAsSb epilayers
,”
J. Appl. Phys.
92
,
6939
(
2002
).
41.
I. A.
Buyanova
,
M.
Izadifard
,
W. M.
Chen
,
A.
Polimeni
,
M.
Capizzi
,
H. P.
Xin
, and
C. W.
Tu
, “
Hydrogen-induced improvements in optical quality of GaNAs alloys
,”
Appl. Phys. Lett.
82
,
3662
(
2003
).
42.
X.
Chen
,
Q.
Zhuang
,
H.
Alradhi
,
Z. M.
Jin
,
L.
Zhu
,
X.
Chen
, and
J.
Shao
, “
Midinfrared photoluminescence up to 290 K reveals radiative mechanisms and substrate doping-type effects of InAs nanowires
,”
Nano Lett.
17
,
1545
(
2017
).

Supplementary Material

You do not currently have access to this content.