Ultrafast laser was recently used to modify the surface integrity and peen the surface region of aluminum based alloy 2024-T351 without a sacrificial layer prior to the process. We show that controllable laser parameters such as fluence and pulse duration have a significant influence on peening qualities, such as the compressive residual stress, hardness, and surface roughness of peened parts. The residual stress profile was analyzed by x-ray diffraction. By controlling the laser fluence and pulse duration, it was possible to obtain 200 MPa of compressive residual stresses close to the surface and 100 MPa of compressive residual stresses at 50 μm depth. Moreover, micro-hardness was increased from 2.1 to 2.5 GPa in the near-surface region. In addition, the dislocation densities were evaluated from high-resolution x-ray diffraction peaks. The increase of the dislocation density indicates that plastic deformation occurred, which generated compressive residual stresses and hardness enhancement. Plastic deformation is considered to be created by an ultrafast laser-induced pressure wave. The correlation between laser parameters and modified surface properties is interpreted by the complex interplay between laser excitation, material relaxation, and pressure waves. A pulse duration in the picosecond range and a relatively low fluence is possibly the optimal condition for a best peening quality with small surface roughness, which could potentially be used to reduce surface cracking and associated failures of additively manufactured parts.

1.
Y.
Liu
,
M.
Wang
,
J.
Shi
,
W.
Hui
,
G.
Fan
, and
H.
Dong
, “
Fatigue properties of two case hardening steels after carburization
,”
Int. J. Fatigue
31
,
292
299
(
2009
).
2.
W.
Yan
,
L.
Fang
,
K.
Sun
, and
Y.
Xu
, “
Effect of surface work hardening on wear behavior of Hadfield steel
,”
Mater. Sci. Eng., A
460–461
,
542
549
(
2007
).
3.
K.
Elango
,
J. S.
Hoppius
,
L. M.
Kukreja
,
A.
Ostendorf
, and
E. L.
Gurevich
, “
Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media
,”
Surf. Coat. Technol.
397
,
125988
(
2020
).
4.
F.-L.
Li
,
W.
Xia
, and
Z.-Y.
Zhou
, “Finite element calculation of residual stress and cold-work hardening induced in Inconel 718 by low plasticity burnishing,” in 2010 Third International Conference on Information and Computing. Presented at the 2010 Third International Conference on Information and Computing Science (ICIC) (IEEE, Wuxi, TBD, China, 2010), pp. 175–178.
5.
A.
Ali
,
X.
An
,
C.
Rodopoulos
,
M.
Brown
,
P.
Ohara
,
A.
Levers
, and
S.
Gardiner
, “
The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds
,”
Int. J. Fatigue
29
,
1531
1545
(
2007
).
6.
W.
Braisted
, “
Finite element simulation of laser shock peening
,”
Int. J. Fatigue
21
,
719
724
(
1999
).
7.
C. A.
Rodopoulos
,
J. S.
Romero
,
S. A.
Curtis
, and
D. P.
Peyre
, “
Effect of controlled shot peening and laser shock peening on the fatigue performance of 2024-T351 aluminum alloy
,”
J. Mater. Eng. Perform.
12
,
414
419
(
2003
).
8.
D.
Lee
and
E.
Kannatey-Asibu
, “
Experimental investigation of laser shock peening using femtosecond laser pulses
,”
J. Laser Appl.
23
,
022004
(
2011
).
9.
J. D.
Majumdar
,
E. L.
Gurevich
,
R.
Kumari
, and
A.
Ostendorf
, “
Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel
,”
Appl. Surf. Sci.
364
,
133
140
(
2016
).
10.
X.
Nie
,
W.
He
,
S.
Zang
,
X.
Wang
, and
J.
Zhao
, “
Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts
,”
Surf. Coat. Technol.
253
,
68
75
(
2014
).
11.
P.
Ganesh
,
R.
Sundar
,
H.
Kumar
,
R.
Kaul
,
K.
Ranganathan
,
P.
Hedaoo
,
P.
Tiwari
,
L. M.
Kukreja
,
S. M.
Oak
,
S.
Dasari
, and
G.
Raghavendra
, “
Studies on laser peening of spring steel for automotive applications
,”
Opt. Lasers Eng.
50
,
678
686
(
2012
).
12.
A. H.
Clauer
, “Laser shock peening for fatigue resistance,” in Surface Performance of Titanium, edited by J. K. Gregory, H. J. Rack, and D. Eylon (TMS, Warrendale, PA, 1996), pp. 217–230.
13.
M.
Morales
,
J. A.
Porro
,
M.
Blasco
,
C.
Molpeceres
, and
J. L.
Ocaña
, “
Numerical simulation of plasma dynamics in laser shock processing experiments
,”
Appl. Surf. Sci.
255
,
5181
5185
(
2009
).
14.
R.
Ecault
,
L.
Berthe
,
F.
Touchard
,
M.
Boustie
,
E.
Lescoute
,
A.
Sollier
, and
H.
Voillaume
, “
Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins
,”
J. Phys. D: Appl. Phys.
48
,
095501
(
2015
).
15.
R.
Evans
,
A. D.
Badger
,
F.
Falliès
,
M.
Mahdieh
,
T. A.
Hall
,
P.
Audebert
,
J.-P.
Geindre
,
J.-C.
Gauthier
,
A.
Mysyrowicz
,
G.
Grillon
, and
A.
Antonetti
, “
Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum
,”
Phys. Rev. Lett.
77
,
3359
3362
(
1996
).
16.
R.
Sundar
,
P.
Ganesh
,
G.
Ram Kishor
,
G.
Ragvendra
,
B. K.
Pant
,
V.
Kain
,
K.
Ranganathan
,
R.
Kaul
, and
K. S.
Bindra
, “
Laser shock peening and its applications: A review
,”
Lasers Manuf. Mater. Process.
6
,
85
97
(
2019
).
17.
U.
Trdan
,
T.
Sano
,
D.
Klobčar
,
Y.
Sano
,
J.
Grum
, and
R.
Šturm
, “
Improvement of corrosion resistance of AA2024-T3 using femtosecond laser peening without protective and confining medium
,”
Corros. Sci.
143
,
46
55
(
2018
).
18.
J.
Kaspar
and
A.
Luft
, “
Microstructure formed in body centred cubic metals by laser shock processing
,”
Surf. Eng.
17
,
379
383
(
2001
).
19.
R.
Le Harzic
,
N.
Huot
,
E.
Audouard
,
C.
Jonin
,
P.
Laporte
,
S.
Valette
,
A.
Fraczkiewicz
, and
R.
Fortunier
, “
Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy
,”
Appl. Phys. Lett.
80
,
3886
3888
(
2002
).
20.
T.
Sano
et al., “
High pressure phase synthesis of iron using femtosecond laser-driven shock wave
,”
Appl. Phys. Lett.
83
,
3498
(
2003
).
21.
T.
Masashi
,
S.
Tomokazu
,
S.
Osami
,
O.
Norimasa
,
K.
Shigeru
,
T.
Shingo
,
O.
Masayuki
,
I.
Narumi
,
K.
Ryosuke
,
K. F.
Kobayashi
, and
H.
Akio
, “
Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave
,”
J. Appl. Phys.
110
,
126103
(
2011
).
22.
H.
Nakano
, “
Femtosecond laser peening of stainless steel
,”
JLMN
4
,
35
38
(
2009
).
23.
C.
Lu
,
L.
Ge
,
B.
Zhu
,
Y.
Li
,
X.
Chen
,
X.
Zeng
, and
Y.
Chen
, “
Effective femtosecond laser shock peening on a Mg–3Gd alloy at low pulse energy 430 μJ of 1 kHz
,”
J. Magnesium Alloys
7
,
529
535
(
2019
).
24.
T.
Sano
,
T.
Eimura
,
R.
Kashiwabara
,
T.
Matsuda
,
Y.
Isshiki
,
A.
Hirose
 et al “
Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions
,”
J. Laser Appl.
29
(
1
),
012005
(
2017
).
25.
N.
Maharjan
,
Z.
Lin
,
D. T.
Ardi
,
L.
Ji
, and
M.
Hong
, “
Laser peening of 420 martensitic stainless steel using ultrashort laser pulses
,”
Procedia CIRP
87
,
279
284
(
2020
).
26.
T.
Sano
,
T.
Eimura
,
A.
Hirose
, and
Y.
Kawahito
, “
Improving fatigue performance of laser-welded 2024-T3 aluminum alloy using dry laser peening
,”
Metals
9
,
1192
(
2019
).
27.
R.
Le Harzic
,
D.
Breitling
,
M.
Weikert
,
S.
Sommer
,
C.
Föhl
,
F.
Dausinger
,
S.
Valette
,
C.
Donnet
, and
E.
Audouard
, “
Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses
,”
Appl. Phys. A
80
,
1589
1593
(
2005
).
28.
X.
Zhao
and
Y. C.
Shin
, “
Femtosecond laser ablation of aluminum in vacuum and air at high laser intensity
,”
Appl. Surf. Sci.
283
,
94
99
(
2013
).
29.
T. R.
Thomas
, “
Characterization of surface roughness
,”
Precis. Eng.
3
,
97
104
(
1981
).
30.
A.
Borbély
and
I.
Groma
, “
Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks
,”
Appl. Phys. Lett.
79
,
1772
1774
(
2001
).
31.
A.
Borbély
,
A.
Révész
, and
I.
Groma
, “
Momentum method applied to evaluation of size and strain in ball-milled iron
,”
Z. Kristallogr. Suppl.
23
,
87
92
(
2006
).
32.
J. L.
Loubet
,
J. M.
Georges
,
O.
Marchesini
, and
G.
Meille
, “
Vickers indentation curves of magnesium oxide (MgO)
,”
J. Tribol.
106
,
43
48
(
1984
).
33.
A.
Rudenko
,
C.
Mauclair
,
F.
Garrelie
,
R.
Stoian
, and
J.-P.
Colombier
, “
Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations
,”
Phys. Rev. B
99
,
235412
(
2019
).
34.
P. B.
Corkum
,
F.
Brunel
,
N. K.
Sherman
, and
T.
Srinivasan-Rao
, “
Thermal response of metals to ultrashort-pulse laser excitation
,”
Phys. Rev. Lett.
61
(
25
),
2886
2889
(
1988
).
35.
J. P.
Colombier
,
P.
Combis
,
F.
Bonneau
,
R.
Le Harzic
, and
E.
Audouard
, “
Hydrodynamic simulations of metal ablation by femtosecond laser irradiation
,”
Phys. Rev. B
71
,
165406
(
2005
).
36.
E.
Bévillon
,
J. P.
Colombier
,
V.
Recoules
, and
R.
Stoian
, “
Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study
,”
Phys. Rev. B
89
,
115117
(
2014
).
37.
A. V.
Bushman
,
I. V.
Lomonosov
,
V. E.
Fortov
et al., “Shock compressibility and equation of state of a polyimide,”
JETP Lett.
58
(
8
),
620
624
(
1993
).
38.
J.-P.
Colombier
,
P.
Combis
,
F.
Bonneau
,
R. L.
Harzic
, and
E.
Audouard
, “
Hydrodynamic simulations of metal ablation by femtosecond laser irradiation
,”
Phys. Rev. B
71
,
165406
(
2006
).
39.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
von Alvensleben
, and
A.
Tunnermann
, “
Femtosecond, picosecond and nanosecond laser ablation of solids
,”
Appl. Phys. A
63
,
109
115
(
1996
).
40.
C.
Rodopoulos
, “
Optimisation of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening–methodology, results and analysis
,”
Int. J. Fatigue
26
,
849
856
(
2004
).
41.
H.
Miao
,
J. A.
Mendez Romero
,
S.
Forgues
, and
M.
Lévesque
, “
Experimental and numerical study of pneumatic needle peening effects on aluminium alloy 2024-T3
,”
J. Mater. Process. Technol.
275
,
116370
(
2020
).
42.
R.
Sun
,
L.
Li
,
Y.
Zhu
,
L.
Zhang
,
W.
Guo
,
P.
Peng
,
B.
Li
,
C.
Guo
,
L.
Liu
,
Z.
Che
,
W.
Li
,
J.
Sun
, and
H.
Qiao
, “
Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening
,”
Modell. Simul. Mater. Sci. Eng.
25
,
065016
(
2017
).
43.
M.
Frija
,
T.
Hassine
,
R.
Fathallah
,
C.
Bouraoui
, and
A.
Dogui
, “
Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity
,”
Mater. Sci. Eng., A
426
,
173
180
(
2006
).
44.
J. P.
Cuq-Lelandais
,
M.
Boustie
,
L.
Berthe
,
T.
de Rességuier
,
P.
Combis
,
J. P.
Colombier
,
M.
Nivard
, and
A.
Claverie
, “
Spallation generated by femtosecond laser driven shocks in thin metallic targets
,”
J. Phys. D: Appl. Phys.
42
,
065402
(
2009
).
45.
U.
Trdan
,
M.
Skarba
, and
J.
Grum
, “
Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy
,”
Mater. Charact.
97
,
57
68
(
2014
).
46.
T.
Kawashima
,
T.
Sano
,
A.
Hirose
,
S.
Tsutsumi
,
K.
Masaki
,
K.
Arakawa
, and
H.
Hori
, “
Femtosecond laser peening of friction stir welded 7075-T73 aluminum alloys
,”
J. Mater. Process. Technol.
262
,
111
122
(
2018
).
47.
A.
Leon
and
E.
Aghion
, “
Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM)
,”
Mater. Charact.
131
,
188
194
(
2017
).
48.
X.
Sedao
,
M.
Lenci
,
A.
Rudenko
,
N.
Faure
,
A.
Pascale-Hamri
,
J. P.
Colombier
, and
C.
Mauclair
, “
Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces
,”
Opt. Lasers Eng.
116
,
68
74
(
2019
).
49.
X.
Sedao
,
M.
Lenci
,
A.
Rudenko
,
A.
Pascale-Hamri
,
J.-P.
Colombier
, and
C.
Mauclair
, “
Additive and substractive surface structuring by femtosecond laser induced material ejection and redistribution
,”
Materials
11
,
2456
(
2018
).
50.
J. Z.
Lu
,
K. Y.
Luo
,
D. K.
Yang
,
X. N.
Cheng
,
J. L.
Hu
,
F. Z.
Dai
,
H.
Qi
,
L.
Zhang
,
J. S.
Zhong
,
Q. W.
Wang
, and
Y. K.
Zhang
, “
Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel
,”
Corros. Sci.
60
,
145
152
(
2012
).
51.
J.
Rech
,
G.
Kermouche
,
W.
Grzesik
,
C.
García-Rosales
,
A.
Khellouki
, and
V.
García-Navas
, “
Characterization and modelling of the residual stresses induced by belt finishing on a AISI52100 hardened steel
,”
J. Mater. Process. Technol.
208
,
187
195
(
2008
).
52.
G.
Kermouche
,
J.
Rech
,
H.
Hamdi
, and
J. M.
Bergheau
, “
On the residual stress field induced by a scratching round abrasive grain
,”
Wear
269
,
86
92
(
2010
).
53.
M.
Dumas
,
F.
Valiorgue
,
G.
Kermouche
,
A. V.
Robaeys
,
U.
Masciantonio
,
A.
Brosse
,
H.
Karaouni
, and
J.
Rech
, “
Evolution of the surface integrity while turning a fillet radius in a martensitic stainless steel 15-5PH
,”
Procedia CIRP
87
,
101
106
(
2020
).
54.
M.
Tariq Jan
,
N.
Hisham Bin Hamid
,
M. H.
Md Khir
,
K.
Ashraf
, and
M.
Shoaib
, “
Reliability and fatigue analysis in cantilever-based MEMS devices operating in harsh environments
,”
J. Qual. Reliab. Eng.
2014
,
987847
.
55.
M.
Elhebeary
,
T.
Harzer
, and
G.
Dehm
, “
Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
16864
16871
(
2020
).
You do not currently have access to this content.