Metamaterial absorbers are usually made of resonant structures backed by a metallic reflector, relying solely on the ohmic and dielectric losses generated by magnetic resonance. In this work, we apply an alternate approach to obtain absorption by overlapping magnetic and electric resonances in a conventional cut-wire-pair metamaterial. A terahertz absorber is designed following that approach achieving up to 99% absorption in simulations without employing a reflector, while the fabricated prototype absorbs up to 82% (excluding the loss of the silicon wafer) of the incident waves at 56 THz. The results empirically confirm that perfect absorption can be obtained using resonance superposition. In addition, the high absorption strength and the possibility to permit the transmission of the proposed metamaterial absorber make it different from other conventional ones.

1.
K.
Iwaszczuk
,
A. C.
Strikwerda
,
K.
Fan
,
X.
Zhang
,
R. D.
Averitt
, and
P. U.
Jepsen
, “
Flexible metamaterial absorbers for stealth applications at terahertz frequencies
,”
Opt. Express
20
,
635
(
2012
).
2.
J.
Kim
,
K.
Han
,
K.
Fan
,
X.
Zhang
, and
J. W.
Hahn
, “
Selective dual-band metamaterial perfect absorber for infrared stealth technology
,”
Sci. Rep
7
,
6740
(
2017
).
3.
T.
Almoneef
and
O. M.
Ramahi
, “
Metamaterial electromagnetic energy harvester with near unity efficiency
,”
Appl. Phys. Lett.
106
,
153902
(
2015
).
4.
B.
Ghaderi
,
V.
Nayyeri
,
M.
Soleimani
, and
O. M.
Ramahi
, “
Multi-polarisation electromagnetic energy harvesting with high efficiency
,”
IET Microw. Antennas Propag.
12
,
2271
(
2018
).
5.
M.
Chirumamilla
,
G. V.
Krishnamurthy
,
K.
Knopp
,
T.
Krekeler
,
M.
Graf
,
D.
Jalas
,
M.
Ritter
,
M.
Stomer
,
A. Y.
Petrov
, and
M.
Eich
, “
Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
,”
Sci. Rep.
9
,
7241
(
2019
).
6.
J.
Zhou
,
Z.
Liu
,
G.
Liu
,
P.
Pan
,
X.
Liu
,
C.
Tang
,
Z.
Liu
, and
J.
Wang
, “
Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics
,”
Opt. Express
28
,
36476
(
2020
).
7.
J.
Grant
,
M.
Kenney
,
Y.
Shah
,
I.
Escorcia-Carranza
, and
D.
Cumming
, “
CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications
,”
Opt. Express
26
,
10408
(
2018
).
8.
U. T. D.
Thuy
,
N. T.
Thuy
,
N. T.
Tung
,
E.
Janssens
, and
N. Q.
Liem
, “
Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection
,”
APL Mater.
7
,
071102
(
2019
).
9.
B.
Kante
,
S. N.
Burokur
,
A.
Sellier
,
A.
de Lustrac
, and
J.-M.
Lourtioz
, “
Controlling plasmon hybridization for negative refraction metamaterials
,”
Phys. Rev. B
79
,
075121
(
2009
).
10.
D. T.
Viet
,
N. V.
Hieu
,
V. D.
Lam
, and
N. T.
Tung
, “
Isotropic metamaterial absorber using cut-wire-pair structures
,”
Appl. Phys. Express
8
,
032001
(
2015
).
11.
T. V.
Huynh
,
B. S.
Tung
,
B. X.
Khuyen
,
S. T.
Ngo
,
V. D.
Lam
, and
N. T.
Tung
, “
Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene
,”
Comput. Mater. Sci.
166
,
276
(
2019
).
12.
A.
Sellier
,
T. V.
Teperik
, and
A.
de Lustrac
, “
Resonant circuit model for efficient metamaterial absorber
,”
Opt. Express
21
,
A997
(
2013
).
13.
M. Q.
Dinh
,
M. T.
Le
,
S. T.
Ngo
, and
N. T.
Tung
, “
Unifying approach to multilayer metamaterials absorber for bandwidth enhancement
,”
Opt. Commun.
485
,
126725
(
2021
).
14.
J.
Zhou
,
E. N.
Economon
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Unifying approach to left-handed material design
,”
Opt. Lett.
31
,
3620
(
2012
).
15.
N. T.
Tung
and
T.
Tanaka
, “
Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications
,”
Photonics Nanostruct. Fundam. Appl.
28
,
100
(
2018
).
16.
P. R.
Gray
,
P. J.
Hurst
,
S. H.
Lewis
, and
R. G.
Meyer
,
Analysis and Design of Analog Integrated Circuits
, 5th ed. (
Wiley
,
2009
), p.
40
.
17.
A. M. A.
Sabaawi
,
C. C.
Tsimenidis
, and
B. S.
Sharif
, “Overview of nanoantennas for solar rectennas,” in Rectenna Solar Cells, edited by G. Moddel and S. Grover (Springer, New York, 2013), p. 236.
18.
P. W.
Oluwasanya
,
G.
Rughoobur
, and
L. G.
Occhipinti
, “
Comparison of analytical and numerical methods of obtaining coplanar capacitance of microelectrodes for particulate matter detection
,”
IEEE Sens. J.
20
,
8631
(
2020
).

Supplementary Material

You do not currently have access to this content.