Strain engineered performance enhancement in SiGe channels for p-MOSFETs is one of the main drivers for the development of microelectronic technologies. Thus, there is a need for precise and accurate strain mapping techniques with small beams. Scanning X-Ray Diffraction Microscopy (SXDM) is a versatile tool that allows measuring quantitative strain maps on islands as thin as 13 nm quickly. From the high velocity and robustness of the technique, statistical information can be extracted for a large number of individual islands of different sizes. In this paper, we used the advantages of SXDM to demonstrate the effectiveness of the condensation method used to grow ultra-thin layers of strained SiGe and to determine their relaxation lengths at patterned interfaces.

1.
D. J.
Dunstan
, “
Strain and strain relaxation in semiconductors
,”
J. Mater. Sci.: Mater. Electron.
8
,
337
375
(
1997
).
2.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
, “
Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors
,”
J. Appl. Phys.
97
,
011101
(
2005
).
3.
S.
Bedell
,
A.
Khakifirooz
, and
D.
Sadana
, “
Strain scaling for CMOS
,”
MRS Bull.
39
,
131
137
(
2014
).
4.
D. J.
Paul
, “
Silicon-germanium strained layer materials in microelectronics
,”
Adv. Mater.
11
,
191
204
(
1999
).
5.
S.
Baudot
,
F.
Andrieu
,
O.
Faynot
, and
J.
Eymery
, “
Electrical and diffraction characterization of short and narrow MOSFETs on fully depleted strained silicon-on-insulator (sSOI)
,”
Solid State Electron.
54
,
861
869
(
2010
).
6.
M.
Casse
,
L.
Hutin
,
C.
Le Royer
,
D.
Cooper
,
J.-M.
Hartmann
, and
G.
Reimbold
, “
Experimental investigation of hole transport in strained Si1xGex/SOI pMOSFETs—Part I: Scattering mechanisms in long-channel devices
,”
IEEE Trans. Electron Devices
59
,
316
325
(
2012
).
7.
O.
Weber
,
E.
Josse
,
J.
Mazurier
,
N.
Degors
,
S.
Chhun
,
P.
Maury
,
S.
Lagrasta
,
D.
Barge
,
J.
Manceau
, and
M.
Haond
, “14 nm FDSOI upgraded device performance for ultra-low voltage operation,” in 2015 Symposium on VLSI Technology (IEEE, 2015), pp. T168–T169.
8.
K.
Cheng
,
A.
Khakifirooz
,
N.
Loubet
,
S.
Luning
,
T.
Nagumo
,
M.
Vinet
,
Q.
Liu
,
A.
Reznicek
,
T.
Adam
,
S.
Naczas
,
P.
Hashemi
,
J.
Kuss
,
J.
Li
,
H.
He
,
L.
Edge
,
J.
Gimbert
,
P.
Khare
,
Y.
Zhu
,
Z.
Zhu
,
A.
Madan
,
N.
Klymko
,
S.
Holmes
,
T. M.
Levin
,
A.
Hubbard
,
R.
Johnson
,
M.
Terrizzi
,
S.
Teehan
,
A.
Upham
,
G.
Pfeiffer
,
T.
Wu
,
A.
Inada
,
F.
Allibert
,
B.-Y.
Nguyen
,
L.
Grenouillet
,
Y.
Le Tiec
,
R.
Wacquez
,
W.
Kleemeier
,
R.
Sampson
,
R. H.
Dennard
,
T. H.
Ning
,
M.
Khare
,
G.
Shahidi
, and
B.
Doris
, “High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained SiGe channel PFET,” in 2012 International Electron Devices Meeting, San Francisco, CA (IEEE, 2012), pp. 18.1.1–18.1.4.
9.
S.
Baudot
,
F.
Andrieu
,
O.
Weber
,
P.
Perreau
,
J.-F.
Damlencourt
,
S.
Barnola
,
T.
Salvetat
,
L.
Tosti
,
L.
Brevard
,
D.
Lafond
,
J.
Eymery
, and
O.
Faynot
, “
Fully depleted strained silicon-on-insulator p-MOSFETs with recessed and embedded silicon–germanium source/drain
,”
IEEE Electron Device Lett.
31
,
1074
1076
(
2010
).
10.
F.
Pezzoli
,
E.
Bonera
,
E.
Grilli
,
M.
Guzzi
,
S.
Sanguinetti
,
D.
Chrastina
,
G.
Isella
,
H.
von Känel
,
E.
Wintersberger
,
J.
Stangl
, and
G.
Bauer
, “
Raman spectroscopy determination of composition and strain in heterostructures
,”
Mater. Sci. Semicond. Process.
11
,
279
284
(
2008
).
11.
L. H.
Wong
,
C. C.
Wong
,
J. P.
Liu
,
D. K.
Sohn
,
L.
Chan
,
L. C.
Hsia
,
H.
Zang
,
Z. H.
Ni
, and
Z. X.
Shen
, “
Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe
,”
Jpn. J. Appl. Phys.
44
,
7922
7924
(
2005
).
12.
S.
Nakashima
,
T.
Mitani
,
M.
Ninomiya
, and
K.
Matsumoto
, “
Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands
,”
J. Appl. Phys.
99
,
053512
(
2006
).
13.
S. C.
Jain
,
B.
Dietrich
,
H.
Richter
,
A.
Atkinson
, and
A. H.
Harker
, “
Stresses in strained GeSi stripes: Calculation and determination from Raman measurements
,”
Phys. Rev. B
52
,
6247
6253
(
1995
).
14.
B.
Dietrich
,
E.
Bugiel
,
H. J.
Osten
, and
P.
Zaumseil
, “
Raman investigations of elastic strain relief in Si1xGex layers on patterned silicon substrate
,”
J. Appl. Phys.
74
,
7223
7227
(
1993
).
15.
M.
Takei
,
D.
Kosemura
,
K.
Nagata
,
H.
Akamatsu
,
S.
Mayuzumi
,
S.
Yamakawa
,
H.
Wakabayashi
, and
A.
Ogura
, “
Channel strain analysis in high-performance damascene-gate p-metal-oxide-semiconductor field effect transistors using high-spatial resolution Raman spectroscopy
,”
J. Appl. Phys.
107
,
124507
(
2010
).
16.
M.
Gailhanou
,
A.
Loubens
,
J.-S.
Micha
,
B.
Charlet
,
A. A.
Minkevich
,
R.
Fortunier
, and
O.
Thomas
, “
Strain field in silicon on insulator lines using high resolution x-ray diffraction
,”
Appl. Phys. Lett.
90
,
111914
(
2007
).
17.
A. A.
Minkevich
,
M.
Gailhanou
,
J.-S.
Micha
,
B.
Charlet
,
V.
Chamard
, and
O.
Thomas
, “
Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm
,”
Phys. Rev. B
76
,
104106
5
(
2007
).
18.
C. E.
Murray
,
H.-F.
Yan
,
I. C.
Noyan
,
Z.
Cai
, and
B.
Lai
, “
High-resolution strain mapping in heteroepitaxial thin-film features
,”
J. Appl. Phys.
98
,
013504
(
2005
).
19.
C. E.
Murray
,
A.
Ying
,
S. M.
Polvino
,
I. C.
Noyan
,
M.
Holt
, and
J.
Maser
, “
Nanoscale silicon-on-insulator deformation induced by stressed liner structures
,”
J. Appl. Phys.
109
,
083543
(
2011
).
20.
G. A.
Chahine
,
M.-I.
Richard
,
R. A.
Homs-Regojo
,
T. N.
Tran-Caliste
,
D.
Carbone
,
V. L. R.
Jacques
,
R.
Grifone
,
P.
Boesecke
,
J.
Katzer
,
I.
Costina
,
H.
Djazouli
,
T.
Schroeder
, and
T. U.
Schülli
, “
Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping
,”
J. Appl. Crystallogr.
47
,
762
769
(
2014
).
21.
M. H.
Zoellner
,
M.-I.
Richard
,
G. A.
Chahine
,
P.
Zaumseil
,
C.
Reich
,
G.
Capellini
,
F.
Montalenti
,
A.
Marzegalli
,
Y.-H.
Xie
,
T. U.
Schülli
,
M.
Häberlen
,
P.
Storck
, and
T.
Schroeder
, “
Imaging structure and composition homogeneity of 300 mm SiGe virtual substrates for advanced CMOS applications by scanning x-ray diffraction microscopy
,”
ACS Appl. Mater. Interfaces
7
,
9031
9037
(
2015
).
22.
S. O.
Hruszkewycz
,
M. V.
Holt
,
C. E.
Murray
,
J.
Bruley
,
J.
Holt
,
A.
Tripathi
,
O. G.
Shpyrko
,
I.
McNulty
,
M. J.
Highland
, and
P. H.
Fuoss
, “
Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused x-ray bragg projection ptychography
,”
Nano Lett.
12
,
5148
5154
(
2012
).
23.
S. O.
Hruszkewycz
,
M. V.
Holt
,
M.
Allain
,
V.
Chamard
,
S. M.
Polvino
,
C. E.
Murray
, and
P. H.
Fuoss
, “
Efficient modeling of Bragg coherent x-ray nanobeam diffraction
,”
Opt. Lett.
40
,
3241
3244
(
2015
).
24.
S. O.
Hruszkewycz
,
M.
Allain
,
M. V.
Holt
,
C. E.
Murray
,
J. R.
Holt
,
P. H.
Fuoss
, and
V.
Chamard
, “
High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography
,”
Nat. Mater.
16
,
244
251
(
2016
).
25.
S.
Baudot
,
F.
Andrieu
,
F.
Rieutord
, and
J.
Eymery
, “
Elastic relaxation in patterned and implanted strained silicon on insulator
,”
J. Appl. Phys.
105
,
114302
114310
(
2009
).
26.
D.
Gu
,
M.
Zhu
,
G. K.
Celler
, and
H.
Baumgart
, “
Size and thickness effect on the local strain relaxation in patterned strained silicon-on-insulator
,”
Electrochem. Solid State Lett.
12
,
H113
(
2009
).
27.
O.
Moutanabbir
,
M.
Reiche
,
A.
Hähnel
,
M.
Oehme
, and
E.
Kasper
, “
Multiwavelength micro-Raman analysis of strain in nanopatterned ultrathin strained silicon-on-insulator
,”
Appl. Phys. Lett.
97
,
053105
(
2010
).
28.
T.
Tezuka
,
N.
Sugiyama
,
T.
Mizuno
,
M.
Suzuki
, and
S.-I.
Takagi
, “
A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub-100 nm strained silicon-on-insulator MOSFETs
,”
Jpn. J. Appl. Phys.
40
,
2866
2874
(
2001
).
29.
T.
Tezuka
,
S.
Nakaharai
,
Y.
Moriyama
,
N.
Sugiyama
, and
S.
Takagi
, “
High-mobility strained SiGe-on-insulator pMOSFETs with Ge-rich surface channels fabricated by local condensation technique
,”
IEEE Electron Device Lett.
26
,
243
245
(
2005
).
30.
T.
Tezuka
,
S.
Nakaharai
,
Y.
Moriyama
,
N.
Hirashita
,
E.
Toyoda
,
T.
Numata
,
T.
Irisawa
,
K.
Usuda
,
N.
Sugiyama
,
T.
Mizuno
, and
S.-I.
Takagi
, “
Strained SOI/SGOI dual-channel CMOS technology based on the condensation technique
,”
Semicond. Sci. Technol.
22
,
S93
S98
(
2007
).
31.
T.
David
,
A.
Benkouider
,
J.-N.
Aqua
,
M.
Cabie
,
L.
Favre
,
T.
Neisius
,
M.
Abbarchi
,
M.
Naffouti
,
A.
Ronda
,
K.
Liu
, and
I.
Berbezier
, “
Kinetics and energetics of Ge condensation in SiGe oxidation
,”
J. Phys. Chem. C
119
,
24606
24613
(
2015
).
32.
V.
Boureau
,
D.
Benoit
,
B.
Warot
,
M.
Hÿtch
, and
A.
Claverie
, “
Strain/composition interplay in thin SiGe layers on insulator processed by Ge condensation
,”
Mater. Sci. Semicond. Process.
42
,
251
254
(
2016
).
33.
V.
Boureau
, “Déformations introduites lors de la fabrication de transistors FDSOI: Une contribution de l’holographie électronique en champ sombre,” Ph.D. thesis (Université de Toulouse, Toulouse, 2016).
34.
F.
Roze
,
O.
Gourhant
,
E.
Blanquet
,
F.
Bertin
,
M.
Juhel
,
F.
Abbate
,
C.
Pribat
, and
R.
Duru
, “
Comparative analysis of growth rate enhancement and Ge redistribution during silicon-germanium oxidation by rapid thermal oxidation
,”
ECS Trans.
75
,
67
78
(
2016
).
35.
Y.
Zhang
,
K.
Cai
,
C.
Li
,
S.
Chen
,
H.
Lai
, and
J.
Kang
, “
Strain relaxation in ultrathin SGOI substrates fabricated by multistep Ge condensation method
,”
J. Electrochem. Soc.
156
,
H115
(
2009
).
36.
J.
Suh
,
R.
Nakane
,
N.
Taoka
,
M.
Takenaka
, and
S.
Takagi
, “
Highly strained-SiGe-on-insulator p-channel metal-oxide-semiconductor field-effective transistors fabricated by applying Ge condensation technique to strained-Si-on-insulator substrates
,”
Appl. Phys. Lett.
99
,
142108
(
2011
).
37.
V.
Boureau
,
S.
Reboh
,
D.
Benoit
,
M.
Hÿtch
, and
A.
Claverie
, “
Strain evolution of SiGe-on-insulator obtained by the Ge-condensation technique
,”
APL Mater.
7
,
041120
(
2019
).
38.
F.
Mastropietro
,
J.
Eymery
,
G.
Carbone
,
S.
Baudot
,
F.
Andrieu
, and
V.
Favre-Nicolin
, “
Time-dependent relaxation of strained silicon-on-insulator lines using a partially coherent x-ray nanobeam
,”
Phys. Rev. Lett.
111
,
215502
(
2013
).
39.
S. J.
Leake
,
G. A.
Chahine
,
H.
Djazouli
,
T.
Zhou
,
C.
Richter
,
J.
Hilhorst
,
L.
Petit
,
M.-I.
Richard
,
C.
Morawe
,
R.
Barrett
,
L.
Zhang
,
R. A.
Homs-Regojo
,
V.
Favre-Nicolin
,
P.
Boesecke
, and
T. U.
Schülli
, “
The nanodiffraction beamline ID01/ESRF: A microscope for imaging strain and structure
,”
J. Synchrotron Radiat.
26
,
571
584
(
2019
).
40.
C.
Ponchut
,
J. M.
Rigal
,
J.
Clément
,
E.
Papillon
,
A.
Homs
, and
S.
Petitdemange
, “
MAXIPIX, a fast readout photon-counting x-ray area detector for synchrotron applications
,”
J. Instrum.
6
,
C01069
(
2011
).
41.
H.
Chen
,
Y. K.
Li
,
C. S.
Peng
,
H. F.
Liu
,
Y. L.
Liu
,
Q.
Huang
,
J. M.
Zhou
, and
Q.-K.
Xue
, “
Crosshatching on a SiGe film grown on a Si(001) substrate studied by Raman mapping and atomic force microscopy
,”
Phys. Rev. B
65
,
233303
(
2002
).
42.
Note that as the difference in lattice parameter is measured against bulk silicon and not bulk SixGe1x, we use the term deformation rather than strain to label quantified values, since part of the lattice difference is due to the composition rather than a mechanical stress.
43.
R.
Berthelon
, “Strain integration and performance optimization in sub-20nm FDSOI CMOS technology,” Ph.D. thesis (Université Paul Sabatier, Toulouse III, 2018).
44.
The theoretical (113) deformation of Si0.74Ge0.24 relative to bulk silicon is 1.31% for a biaxal stress and 1.115% for an uniaxal one.

Supplementary Material

You do not currently have access to this content.