Carbon nanotubes (CNTs) emerge as biosensors due to their extraordinary electrical transport properties. Such applications depend on interfacing proteins with CNTs in an oriented manner while maintaining their structural and functional integrity, opening versatile opportunities for one-dimensional alignment and high-sensitivity sensing of protein interactions and conformational dynamics. Here, we devised a novel surface architecture for reversible protein immobilization on CNTs via a short peptide tag for fabrication of reusable biosensors for multiple protein analysis. To this end, we conjugated pyrene-poly(ethylene glycol) with tris-nitrilotriacetic acid (Py-PEG-tris-NTA) for site-specific immobilization of oligohistidine(His)-tagged proteins. We demonstrate spontaneous self-assembly of Py-PEG-tris-NTA on CNTs and graphene, as well as specific capturing of His-tagged green fluorescent protein after loading the NTA chelators with Ni(II) ions. The protein binding capacity of tris-NTA-functionalized CNTs could be restored by an imidazole wash, allowing for repeated immobilization cycles. Reflectance interference spectroscopy and fluorescence lifetime analysis confirmed a specific and reversible binding of proteins on CNT-coated silica substrates as well as close interfacing to the CNT surface.

1.
H.
Zhou
and
P.
Bates
, “
Modeling protein association mechanisms and kinetics
,”
Curr. Opin. Struct. Biol.
23
,
887
893
(
2013
).
2.
F.
Sheinerman
,
R.
Norel
, and
B.
Honig
, “
Electrostatic aspects of protein-protein interactions
,”
Curr. Opin. Struct. Biol.
10
,
153
159
(
2000
).
3.
G.
Schreiber
, “
Kinetic studies of protein-protein interactions
,”
Curr. Opin. Struct. Biol.
12
,
41
47
(
2002
).
4.
Y.
Shaul
and
G.
Schreiber
, “
Exploring the charge space of protein-protein association: A proteomic study
,”
Proteins
60
,
341
352
(
2005
).
5.
T.
Sharf
,
N.-P.
Wang
,
J.
Kevek
,
M.
Brown
,
H.
Wilson
,
S.
Heinze
, and
E.
Minot
, “
Single electron charge sensitivity of liquid-gated carbon nanotube transistors
,”
Nano Lett.
14
,
4925
4930
(
2014
).
6.
D.
Kauffman
and
A.
Star
, “
Electronically monitoring biological interactions with carbon nanotube field-effect transistors
,”
Chem. Soc. Rev.
37
,
1197
1206
(
2018
).
7.
M.
Lerner
,
J.
D’Souza
,
T.
Pazina
,
J.
Dailey
,
B.
Goldsmith
,
M.
Robinson
, and
A.
Johnson
, “
Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers
,”
ACS Nano
6
,
5143
5149
(
2012
).
8.
R.
Chen
,
H.
Choi
,
S.
Bangsaruntip
,
E.
Yenilmez
,
X.
Tang
,
Q.
Wang
,
Y.-L.
Chang
, and
H.
Dai
, “
An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices
,”
J. Am. Chem. Soc.
126
,
1563
1568
(
2014
).
9.
K.
Jiang
,
L. S.
Schadler
,
R. W.
Siegel
,
X.
Zhang
,
H.
Zhang
, and
M.
Terrones
, “
Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation
,”
J. Mater. Chem.
14
,
37
39
(
2004
).
10.
Y.
Choi
,
I.
Moody
,
P.
Sims
,
S.
Hunt
,
B.
Corso
,
I.
Perez
,
G.
Weiss
, and
P.
Collins
, “
Single-molecule lysozyme dynamics monitored by an electronic circuit
,”
Science
335
,
319
324
(
2012
).
11.
Z.
Wang
,
J.
You
,
R.
Gui
,
H.
Jin
, and
Y.
Xia
, “
Carbon nanomaterials-based electrochemical aptasensors
,”
Biosens. Bioelectron.
79
,
136
149
(
2016
).
12.
S.
Khezrian
,
A.
Salimi
,
H.
Teymourian
, and
R.
Hallaj
, “
Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode
,”
Biosens. Bioelectron.
43
,
218
225
(
2013
).
13.
P.
Gershon
and
S.
Khilko
, “
Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector
,”
J. Immunol. Methods
183
,
65
76
(
1995
).
14.
G. B.
Sigal
,
C.
Bamdad
,
A.
Barberis
,
J.
Strominger
, and
G. M.
Whitesides
, “
A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance
,”
Anal. Chem.
68
,
490
497
(
1996
).
15.
C.
Dietrich
,
L.
Schmitt
, and
R.
Tampe
, “
Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a novel class of chelator lipids
,”
Proc. Natl. Acad. Sci. U.S.A.
92
,
9014
9018
(
1995
).
16.
E.
Ueda
,
P.
Gout
, and
L.
Morganti
, “
Current and prospective applications of metal ion–protein binding
,”
J. Chromatogr. A
988
,
1
23
(
2003
).
17.
C.
Richard
,
F.
Balavoine
,
P.
Schultz
,
T. W.
Ebbesen
, and
C.
Mioskowski
, “
Supramolecular self-assembly of lipid derivatives on carbon nanotubes
,”
Science
300
,
775
778
(
2003
).
18.
C.
Richard
,
F.
Balavoine
,
P.
Schultz
,
N.
Moreau
, and
C.
Mioskowski
, “
Immobilization of histidine-tagged proteins on functionalized carbon nanotubes
,”
J. Bionanosci.
1
,
106
113
(
2007
).
19.
L.
Wang
,
L.
Wei
,
Y.
Chen
, and
R.
Jiang
, “
Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes
,”
J. Biotechnol.
150
,
57
63
(
2010
).
20.
J.-H.
Ahn
,
J.-H.
Kim
,
N. F.
Reuel
,
P. W.
Barone
,
A. A.
Boghossian
,
J.
Zhang
,
H.
Yoon
,
A. C.
Chang
,
A. J.
Hilmer
, and
M. S.
Strano
, “
Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis
,”
Nano Lett.
11
,
2743
2752
(
2011
).
21.
M. A.
Kadir
,
J.
Park
,
B. S.
Kim
,
S. G.
Lee
, and
H.-J.
Paik
, “
Soft immobilization of proteins onto single-walled carbon nanotubes through nickel complexed nitrilotriacetic acid-end functionalized polystyrenes
,”
Isr. J. Chem.
52
,
359
363
(
2012
).
22.
S.
Chebil
,
N.
Macauley
,
T.
Hianik
, and
H.
Korri-Youssoufi
, “
Multiwalled carbon nanotubes modified by NTA-copper complex for label-free electrochemical immunosensor detection
,”
Electroanalysis
25
,
636
643
(
2012
).
23.
A.
Tinazli
,
J.
Tang
,
R.
Valiokas
,
S.
Picuric
,
S.
Lata
,
J.
Piehler
,
B.
Liedberg
, and
R.
Tampé
, “
High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: A generic platform for protein chip technologies
,”
Chem. Eur. J.
11
,
5249
5259
(
2005
).
24.
R.
Valiokas
,
G.
Klenkar
,
A.
Tinazli
,
R.
Tampé
,
B.
Liedberg
, and
J.
Piehler
, “
Differential protein assembly on micropatterned surfaces with tailored molecular and surface multivalency
,”
ChemBioChem
7
,
1325
1329
(
2006
).
25.
R.
Valiokas
,
G.
Klenkar
,
A.
Tinazli
,
A.
Reichel
,
R.
Tampé
,
J.
Piehler
, and
B.
Liedberg
, “
Self-assembled monolayers containing terminal mono-, bis-, and tris-nitrilotriacetic acid groups: Characterization and application
,”
Langmuir
24
,
4959
4967
(
2008
).
26.
J. A.
Nye
and
J. T.
Groves
, “
Kinetic control of histidine-tagged protein surface density on supported lipid bilayers
,”
Langmuir
24
,
4145
4149
(
2008
).
27.
S.
Lata
,
A.
Reichel
,
R.
Brock
,
R.
Tampé
, and
J.
Piehler
, “
High-affinity adaptors for switchable recognition of histidine-tagged proteins
,”
J. Am. Chem. Soc.
127
,
10205
10215
(
2005
).
28.
S.
Waichman
,
C.
You
,
O.
Beutel
,
M.
Bhagawati
, and
J.
Piehler
, “
Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns
,”
Anal. Chem.
83
,
501
508
(
2011
).
29.
O.
Beutel
,
J.
Nikolaus
,
O.
Birkholz
,
C.
You
,
T.
Schmidt
,
A.
Herrmann
, and
J.
Piehler
, “
High-fidelity protein targeting into membrane lipid microdomains in living cells
,”
Angew. Chem.
126
,
1335
1339
(
2013
).
30.
D.
Das
and
P.
Das
, “
Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles
,”
Langmuir
25
,
4421
4428
(
2009
).
31.
R.
Pangule
,
S.
Brooks
,
C.
Dinu
,
S.
Bale
,
S.
Salmon
,
G.
Zhu
,
D.
Metzger
,
R.
Kane
, and
J.
Dordick
, “
Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates
,”
ACS Nano
4
,
3993
4000
(
2010
).
32.
J.
Zhao
,
J.
Lu
,
J.
Han
, and
C.
Yang
, “
Noncovalent functionalization of carbon nanotubes by aromatic organic molecules
,”
Appl. Phys. Lett.
82
,
3746
3748
(
2003
).
33.
C.
Spudat
,
C.
Meyer
,
K.
Goss
, and
C. M.
Schneider
, “
Peapod synthesis depending on the number of nanotube sidewalls
,”
Phys. Status Solidi B
246
,
2498
2501
(
2009
).
34.
C.
You
,
S.
Wilmes
,
O.
Beutel
,
S.
Löchte
,
Y.
Podoplelowa
,
F.
Roder
,
C.
Richter
,
T.
Seine
,
D.
Schaible
,
G.
Uzé
,
S.
Clarke
,
F.
Pinaud
,
M.
Dahan
, and
J.
Piehler
, “
Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells
,”
Angew. Chem. Int. Ed. Engl.
49
,
4108
4112
(
2010
).
35.
M.
Bhagawati
,
S.
Lata
,
R.
Tampé
, and
J.
Piehler
, “
Native laser lithography of His-tagged proteins by uncaging of multivalent chelators
,”
J. Am. Chem. Soc.
132
,
5932
5933
(
2010
).
36.
C.
You
and
J.
Piehler
, “
Multivalent chelators for spatially and temporally controlled protein functionalization
,”
Anal. Bioanal. Chem.
406
,
3345
3357
(
2014
).
37.
J.
Piehler
,
A.
Brecht
, and
G.
Gauglitz
, “
Affinity detection of low molecular weight analytes
,”
Anal. Chem.
68
,
139
143
(
1996
).
38.
M.
Gavutis
,
S.
Lata
,
P.
Lamken
,
P.
Müller
, and
J.
Piehler
, “
Lateral ligand-receptor interactions on membranes probed by simultaneous fluorescence-interference detection
,”
Biophys. J.
88
,
4289
4302
(
2005
).
39.
K.
Sigmundsson
,
G.
Másson
,
R.
Rice
,
N.
Beauchemin
, and
B.
Öbrink
, “
Determination of active concentrations and association and dissociation rate constants of interacting biomolecules: An analytical solution to the theory for kinetic and mass transport limitations in biosensor technology and its experimental verification
,”
Biochemistry
41
,
8263
8276
(
2002
).
40.
M. A.
Hink
,
R. A.
Griep
,
J. W.
Borst
,
A.
van Hoek
,
M. H. M.
Eppink
,
A.
Schots
, and
A. J. W. G.
Visser
, “
Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein
,”
J. Biol. Chem.
275
,
17556
17560
(
2000
).
41.
H. W.
Postma
,
A.
Sellmeijer
, and
C.
Dekker
, “
Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope
,”
Adv. Mater.
12
,
1299
1302
(
2000
).
42.
L. M. C.
Lima
,
W.
Fu
,
L.
Jiang
,
A.
Kros
, and
G. F.
Schneider
, “
Graphene-stabilized lipid monolayer heterostructures: A novel biomembrane superstructure
,”
Nanoscale
8
,
18646
18653
(
2016
).
43.
M.
Farell
,
M.
Wetherington
,
M.
Shankla
,
I.
Chae
,
S.
Subramanian
,
S. H.
Kim
,
A.
Aksimentiev
,
J.
Robinson
, and
M.
Kumara
, “
Characterization of lipid structure and fluidity of lipid membranes on epitaxial graphene and their correlation to graphene features
,”
Langmuir
35
,
4726
4735
(
2019
).
44.
N.
Füllbrunn
,
Z.
Li
,
L.
Jorde
,
C.
Richter
,
R.
Kurre
,
L.
Langemeyer
,
C.
Yu
,
C.
Meyer
,
J.
Enderlein
,
C.
Ungermann
,
J.
Piehler
, and
C.
You
, “
Nanoscopic anatomy of dynamic multi-protein complexes at membranes resolved by graphene induced energy transfer
,”
eLife
10
,
e62501
(
2021
).
45.
R. S.
Swathi
and
K. L.
Sebastian
, “
Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence
,”
J. Chem. Phys.
130
,
086101
(
2009
).
46.
A.
Ghosh
,
A.
Sharma
,
A. I.
Chizhik
,
S.
Isbaner
,
D.
Ruhlandt
,
R.
Tsukanov
,
I.
Gregor
,
N.
Karedla
, and
J.
Enderlein
, “
Graphene-based metal-induced energy transfer for sub-nanometre optical localization
,”
Nat. Photonics
13
,
860
865
(
2019
).
47.
K. S.
Sarkisyan
,
A. S.
Goryashchenko
,
P. V.
Lidsky
,
D. A.
Gorbachev
,
N. G.
Bozhanova
,
K. A.
Lukyanov
, and
A. S.
Mishin
, “
Green fluorescent protein with anionic tryptophan-based chromophore and long fluorescence lifetime
,”
Biophys. J.
109
,
380
389
(
2015
).
You do not currently have access to this content.