The sphericity, κ, is introduced to describe the morphology of the magnetic grains. The effect of κ on the magnetic properties of rare earth-transition metal (RE-TM) permanent magnets was investigated using the micromagnetic simulation, where randomly aligned, irregular-shaped grains with ferromagnetic/non-ferromagnetic grain boundary (GB) phases were considered. For the simulated RE-TM systems, the coercivity increases significantly with the increase in κ. In particular, with 10 nm thick non-ferromagnetic GB phase, the coercivity, 1.74 MA/m, for к = 0.9 increases by 22% compared to 1.43 MA/m for к = 0.6 in the Nd2Fe14B system. Among the simulated materials, the SmCo5 system displays the largest increment in coercivity, increasing by 0.82 MA/m from 7.61 MA/m for к = 0.6 to 8.43 MA/m for к = 0.9. Magnetization reversal patterns under different external fields indicate that the dependence of coercivity on κ is attributed to the formation of local reversals at different regions and mechanisms of reversal propagation. Meanwhile the effect of κ cannot be neglected even at elevated temperatures. The simulated results of (Dy0.47Nd0.53)2Fe14B systems with the non-ferromagnetic GB layer of 4 nm at a temperature of 450 K show that the coercivity for к = 0.9 (1.88 MA/m) increased by 23% compared with that of к = 0.6 (1.52 MA/m). Our study demonstrates that the sphericity can be used as a key parameter to design high-coercivity RE-TM magnets.

1.
H.
Nakamura
,
Scr. Mater.
154
,
273
276
(
2018
).
2.
L.
Liu
,
H.
Sepehri-Amin
,
T.
Ohkubo
,
M.
Yano
,
A.
Kato
,
N.
Sakuma
,
T.
Shoji
, and
K.
Hono
,
Scr. Mater.
129
,
44
47
(
2017
).
3.
X.
Xia
,
M.
Liu
,
T.
Zhang
 et al,
Mater. Charact.
168
,
110543
(
2020
).
4.
S. C.
Westmoreland
,
R. F. L.
Evans
,
G.
Hrkac
 et al,
Scr. Mater.
148
,
56
62
(
2018
).
5.
X.
Tang
,
J.
Li
,
Y.
Miyazaki
,
H.
Sepehri-Amin
,
T.
Ohkubo
,
T.
Schrefl
, and
K.
Hono
,
Acta Mater.
183
,
408
417
(
2020
).
6.
H.
Forster
,
T.
Schrefl
,
W.
Scholz
 et al,
J. Magn. Magn. Mater.
249
(
1–2
),
181
186
(
2002
).
7.
H.
Oezelt H
,
A.
Kovacs
,
F.
Reichel
 et al,
J. Magn. Magn. Mater.
381
,
28
33
(
2015
).
8.
J.
Fischbacher
,
A.
Kovacs
,
M.
Gusenbauer
 et al,
J. Phys. D: Appl. Phys.
51
,
193002
(
2018
).
9.
A.
Kovacs
,
J.
Fischbacher
,
M.
Gusenbauer
,
H.
Oezelt
,
H. C.
Herper
,
O. Yu.
Vekilova
,
P.
Nieves
,
S.
Arapan
, and
T.
Schrefl
,
Engineering
6
(
2
),
148
153
(
2020
).
10.
S.
Bance
,
J.
Fischbacher
,
A.
Kovacs
,
H.
Oezelt
,
F.
Reichel
, and
T.
Schrefl
,
J. Mater.
67
,
1350
(
2015
).
11.
S.
Bance
,
J.
Fischbacher
, and
T.
Schrefl
,
J. Appl. Phys.
117
,
17A733
(
2015
).
12.
S.
Bance
,
H.
Oezelt
,
T.
Schrefl
 et al,
Appl. Phys. Lett.
104
,
182408
(
2014
).
13.
J.
Thielsch
,
D.
Suess
,
L.
Schultz
, and
O.
Gutfleisch
,
J. Appl. Phys.
114
,
223909
(
2013
).
14.
M.
Yi
,
O.
Gutfleisch
, and
B. X.
Xu
,
J. Appl. Phys.
120
,
033903
(
2016
).
15.
S.
Erokhin
and
D.
Berkov
,
Phys. Rev. Appl.
7
(
1
),
014011
(
2017
).
16.
J.
Fischbacher
,
S.
Bance
,
M.
Gusenbauer
,
A.
Kovacs
,
H.
Oezelt
,
F.
Reichel
, and
T.
Schrefl
, in
Proceedings of the 23rd International Workshop on Rare Earth and Future Permanent Magnets and Their Applications
(REPM,
Annapolis
,
MD
,
2014
).
17.
K.
Hono
and
H.
Sepehri-Amin
,
Scr. Mater.
67
,
530
535
(
2012
).
18.
M.
Yan
,
J.
Jin
, and
T.
Ma
,
Chin. Phys. B
28
(
7
),
077507
(
2019
).
19.
A.
Spettl
,
T.
Werz
,
C. E.
Krill
 III
, and
V.
Schmidt
,
J. Stat. Phys.
154
,
913
928
(
2014
).
20.
R.
Quey
and
L.
Renversade
,
Comput. Methods Appl. Mech. Eng.
330
,
308
333
(
2018
).
21.
See http://neper.sourceforge.net for “Neper: Polycrystal Generation and Meshing (Version 3.5).”
22.
G.
Hrkac
,
K.
Butler
,
T.
Woodcock
,
L.
Saharan
,
T.
Schrefl
, and
O.
Gutfleisch
,
J. Mater.
66
,
1138
(
2014
).
23.
G.
Hrkac
,
T.
Woodcock
,
K.
Butler
,
L.
Saharan
,
M.
Bryan
,
T.
Schrefl
, and
O.
Gutfleisch
,
Scr. Mater.
70
,
35
(
2014
).
24.
X.
Chen
,
C.
Cen
,
L.
Zhou
,
R.
Cao
,
Z.
Yi
, and
Y.
Tang
,
J. Magn. Magn. Mater.
483
,
152
157
(
2019
).
25.
See http://www.gmsh.info for “Gmsh: A Three-dimensional Finite Element Mesh Generator.”
26.
See http://www.magpar.net for “Magpar: A Finite Element Micromagnetics Package (Version 0.9).”
27.
X.
Tang
,
H.
Sepehri-Amin
,
T.
Ohkubo
,
M.
Yano
,
M.
Ito
,
A.
Kato
,
N.
Sakuma
,
T.
Shoji
,
T.
Schrefl
, and
K.
Hono
,
Acta Mater.
144
,
884
895
(
2018
).
28.
D.
Liu
,
T. Y.
Zhao
,
R.
Li
,
M.
Zhang
,
R. X.
Shang
,
J. F.
Xiong
,
J.
Zhang
,
J. R.
Sun
, and
B. G.
Shen
,
AIP Adv.
7
,
056201
(
2017
).
29.
T.
Oikawa
,
H.
Yokota
,
T.
Ohkubo
, and
K.
Hono
,
AIP Adv.
6
,
056006
(
2016
).
30.
H.
Fukunaga
,
R.
Horikawa
,
M.
Nakano
,
T.
Yanai
,
T.
Fukuzaki
, and
K.
Abe
,
IEEE Trans. Magn.
49
(
7
),
3240
(
2013
).
31.
X.
Chen
,
C.
Cen
,
L.
Zhou
,
R.
Cao
,
Z.
Yi
, and
Y.
Tang
,
J. Magn. Mang. Mater.
483
,
152
157
(
2019
).
32.
33.
S.
Bance
,
J.
Fischbacher
,
T.
Schrefl
,
I.
Zins
,
G.
Rieger
, and
C.
Cassignol
,
J. Magn. Magn. Mater.
363
,
121
(
2014
).
34.
R.
Fischer
,
T.
Schrefl
,
H.
Kronmuller
, and
J.
Fidler
,
J. Magn. Magn. Mater.
150
(
3
),
329
(
1995
).
35.
W.
Rave
,
K.
Ramstöck
, and
A.
Hubert
,
J. Magn. Magn. Mater.
183
,
329
(
1998
).
36.
T.
Schrefl
,
J.
Fidler
, and
H.
Kronmüller
,
J. Magn. Magn. Mater.
138
,
15
(
1994
).
37.
J. M. D.
Coey
,
IEEE Trans. Magn.
47
(
12
),
4671
(
2011
).
You do not currently have access to this content.