Successful application of plasma-activated water (PAW) as an alternate source of nitrogen for agricultural application requires low specific energy consumption. This work reports on a dielectric barrier discharge (DBD) plasma reactor for the generation of PAW having low specific energy (SE) consumption. The SE to produce N in PAW was 3.26 GJ/kg of N, which is 68% lower than the lowest value reported to date for DBD-PAW systems. The PAW generated was characterized for its physico-chemical parameters, most of which showed a linear increase with activation time (ta). The concentration of hydrogen ion and that of the nitrate, which is the desired product for agricultural application, remained stable for four weeks in the PAW. The results indicate that minimal reactive oxygen species was formed in the plasma zone and only reactive nitrogen species (RNS) was formed confirming selectivity toward RNS.

1.
D. B.
Graves
, “
Reactive species from cold atmospheric plasma: Implications for cancer therapy: Reactive species from cold atmospheric plasma
,”
Plasma Process Polym.
11
,
1120
1127
(
2014
).
2.
P. J.
Bruggeman
,
M. J.
Kushner
,
B. R.
Locke
,
J. G. E.
Gardeniers
,
W. G.
Graham
,
D. B.
Graves
 et al, “
Plasma–liquid interactions: A review and roadmap
,”
Plasma Sources Sci. Technol.
25
,
053002
(
2016
).
3.
R.
Thirumdas
,
A.
Kothakota
,
U.
Annapure
,
K.
Siliveru
,
R.
Blundell
,
R.
Gatt
 et al, “
Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture
,”
Trends Food Sci. Technol.
77
,
21
31
(
2018
).
4.
N.
Punith
, “
Plasma activated water generation and its application in agriculture
,”
Adv. Mater. Lett.
10
,
700
704
(
2019
).
5.
L.
Nani
,
F.
Tampieri
,
E.
Ceriani
,
E.
Marotta
, and
C.
Paradisi
, “
ROS production and removal of the herbicide metolachlor by air non-thermal plasma produced by DBD, DC− and DC+ discharges implemented within the same reactor
,”
J. Phys. D: Appl. Phys.
51
,
274002
(
2018
).
6.
F.
Judée
,
S.
Simon
,
C.
Bailly
, and
T.
Dufour
, “
Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms
,”
Water Res.
133
,
47
59
(
2018
).
7.
R.
Laurita
,
D.
Barbieri
,
M.
Gherardi
,
V.
Colombo
, and
P.
Lukes
, “
Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma
,”
Clin. Plasma Med.
3
,
53
61
(
2015
).
8.
T.
Abuzairi
,
S.
Ramadhanty
,
D. F.
Puspohadiningrum
,
A.
Ratnasari
,
N. R.
Poespawati
, and
R. W.
Purnamaningsih
, “
Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization
,”
AIP Conf. Proc.
1933
,
040017
(
2018
).
9.
S.
Suwal
,
C. P.
Coronel-Aguilera
,
J.
Auer
,
B.
Applegate
,
A. L.
Garner
, and
J.-Y.
Huang
, “
Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology
,”
Innov. Food Sci. Emerg. Technol.
53
,
18
25
(
2019
).
10.
U. K.
Ercan
,
H.
Wang
,
H.
Ji
,
G.
Fridman
,
A. D.
Brooks
, and
S. G.
Joshi
, “
Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time
,”
Plasma Processes Polym.
10
,
544
555
(
2013
).
11.
M. J.
Traylor
,
M. J.
Pavlovich
,
S.
Karim
,
P.
Hait
,
Y.
Sakiyama
,
D. S.
Clark
 et al, “
Long-term antibacterial efficacy of air plasma-activated water
,”
J. Phys. D: Appl. Phys.
44
,
472001
(
2011
).
12.
M. J.
Pavlovich
,
H.-W.
Chang
,
Y.
Sakiyama
,
D. S.
Clark
, and
D. B.
Graves
, “
Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water
,”
J. Phys. D: Appl. Phys.
46
,
145202
(
2013
).
13.
P. S. G.
Subramanian
,
A.
Jain
,
A. M.
Shivapuji
,
N. R.
Sundaresan
,
S.
Dasappa
, and
L.
Rao
, “
Plasma-activated water from a dielectric barrier discharge plasma source for the selective treatment of cancer cells
,”
Plasma Process Polym.
17
,
1900260
(
2020
).
14.
G. G.
Bălan
,
I.
Roșca
,
E.-L.
Ursu
,
F.
Doroftei
,
A.-C.
Bostănaru
,
E.
Hnatiuc
 et al, “
Plasma-activated water: A new and effective alternative for duodenoscope reprocessing
,”
Infect. Drug Resist.
11
,
727
733
(
2018
).
15.
V. I.
Parvulescu
,
M.
Magureanu
, and
P.
Lukes
Plasma Chemistry and Catalysis in Gases and Liquids
(
Wiley-VCH GmbH
,
2012
).
16.
T.
Royintarat
,
P.
Seesuriyachan
,
D.
Boonyawan
,
E. H.
Choi
, and
W.
Wattanutchariya
, “
Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma
,”
Curr. Appl. Phys.
19
,
1006
1014
(
2019
).
17.
M.
Schmidt
,
V.
Hahn
,
B.
Altrock
,
T.
Gerling
,
I. C.
Gerber
,
K.-D.
Weltmann
 et al, “
Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes
,”
Appl. Sci.
9
,
2150
(
2019
).
18.
E.
Corella Puertas
,
A.
Dzafic
, and
S.
Coulombe
, “
Investigation of the electrode erosion in pin-to-liquid discharges and its influence on reactive oxygen and nitrogen species in plasma-activated water
,”
Plasma Chem. Plasma Process.
40
,
145
167
(
2020
).
19.
I.-E.
Vlad
and
S. D.
Anghel
, “
Time stability of water activated by different on-liquid atmospheric pressure plasmas
,”
J. Electrost.
87
,
284
292
(
2017
).
20.
J.
Pawłat
,
P.
Terebun
,
M.
Kwiatkowski
,
B.
Tarabová
,
Z.
Kovaľová
,
K.
Kučerová
 et al, “
Evaluation of oxidative species in gaseous and liquid phase generated by mini-gliding arc discharge
,”
Plasma Chem. Plasma Process.
39
,
627
642
(
2019
).
21.
P.
Lu
,
D.
Boehm
,
P.
Bourke
, and
P. J.
Cullen
, “
Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges
,”
Plasma Process Polym.
14
,
1600207
(
2017
).
22.
W. F. L. M.
Hoeben
,
P. P.
van Ooij
,
D. C.
Schram
,
T.
Huiskamp
,
A. J. M.
Pemen
, and
P.
Lukeš
, “
On the possibilities of straightforward characterization of plasma activated water
,”
Plasma Chem. Plasma Process.
39
,
597
626
(
2019
).
23.
G.
Neretti
,
M.
Taglioli
,
G.
Colonna
, and
C. A.
Borghi
, “
Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water
,”
Plasma Sources Sci. Technol.
26
,
015013
(
2017
).
24.
J.
Chauvin
,
F.
Judée
,
M.
Yousfi
,
P.
Vicendo
, and
N.
Merbahi
, “
Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet
,”
Sci. Rep.
7
,
4562
(
2017
).
25.
L.
Sivachandiran
and
A.
Khacef
, “
Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment
,”
RSC Adv.
7
,
1822
1832
(
2017
).
26.
K.
Oehmigen
,
M.
Hähnel
,
R.
Brandenburg
,
W.
Ch
,
K.-D.
Weltmann
, and
Th.
von Woedtke
, “
The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids
,”
Plasma Process Polym.
7
,
250
257
(
2010
).
27.
J.-S.
Oh
,
E. J.
Szili
,
K.
Ogawa
,
R. D.
Short
,
M.
Ito
,
H.
Furuta
 et al, “
UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance
,”
Jpn. J. Appl. Phys.
57
,
0102B9
(
2018
).
28.
M.
Naïtali
,
G.
Kamgang-Youbi
,
J.-M.
Herry
,
M.-N.
Bellon-Fontaine
, and
J.-L.
Brisset
, “
Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water
,”
Appl. Environ. Microbiol.
76
,
7662
7664
(
2010
).
29.
R. E.
Haling
,
R. J.
Simpson
,
R. A.
Culvenor
,
H.
Lambers
, and
A. E.
Richardson
, “
Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance: Root growth in high-strength, acid soil
,”
Plant Cell Environ.
34
,
444
456
(
2011
).
30.
B.
Adhikari
,
M.
Adhikari
,
B.
Ghimire
,
G.
Park
, and
E. H.
Choi
, “
Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings
,”
Sci. Rep.
9
,
16080
(
2019
).
31.
March Weather Forecast and Climate Bengaluru, India
, see https://www.weather-ind.com/en/india/bengaluru-weather-march for “Weather Atlas 2020.”
32.
C.
Singh
,
C. S.
Sharma
, and
P. R.
Kamble
, “
Amino acid analysis using ion-exchange chromatography: A review
,”
Int. J. Pharmacogn.
1
,
7
(
2014
).
33.
J.-Z.
Zhang
,
Determination of Nitrate and Nitrite in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis
(U.S. Environmental Protection Agency,
1997
), p.
20
.
34.
N. V.
Sreekumar
,
B.
Narayana
,
P.
Hegde
,
B. R.
Manjunatha
, and
B. K.
Sarojini
, “
Determination of nitrite by simple diazotization method
,”
Microchem. J.
74
,
27
32
(
2003
).
35.
D. X.
Liu
,
Z. C.
Liu
,
C.
Chen
,
A. J.
Yang
,
D.
Li
,
M. Z.
Rong
 et al, “
Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways
,”
Sci. Rep.
6
,
23737
(
2016
).
36.
R. D.
Down
and
J. H.
Lehr
, Environmental Instrumentation and Analysis Handbook (Wiley-Interscience, 2005).
37.
F. M.
Dunnivant
,
Determination of Alkalinity of Natural Waters. Environmental Laboratory Exercises for Instrumental Analysis and Environmental Chemistry
(
John Wiley & Sons, Inc.
,
Hoboken
,
NJ
,
2005
), pp.
245
256
.
38.
D. C.
Prieve
,
B. A.
Yezer
,
A. S.
Khair
,
P. J.
Sides
, and
J. W.
Schneider
, “
Formation of charge carriers in liquids
,”
Adv. Colloid Interface Sci.
244
,
21
35
(
2017
).
39.
L.
Coury
,
Conductance Measurements Part 1: Theory. Current Separations
(Bioanalytical Systems, Inc.,
1999
), p.
6
.
40.
J.
Šimečková
,
F.
Krčma
,
D.
Klofáč
,
L.
Dostál
, and
Z.
Kozáková
, “
Influence of plasma-activated water on physical and physical–chemical soil properties
,”
Water
12
,
2357
(
2020
).
41.
N.
Cherkasov
,
A. O.
Ibhadon
, and
P.
Fitzpatrick
, “
A review of the existing and alternative methods for greener nitrogen fixation
,”
Chem. Eng. Process.
90
,
24
33
(
2015
).
42.
B. S.
Patil
,
Q.
Wang
,
V.
Hessel
, and
J.
Lang
, “
Plasma N2-fixation: 1900–2014
,”
Catal. Today
256
,
49
66
(
2015
).
43.
V. D.
Rusanov
,
A. A.
Fridman
, and
G. V.
Sholin
, “
The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules
,”
Sov. Phys. Usp.
24
,
447
474
(
1981
).
44.
D. K.
Smith
,
Chemistry Data Book
(University of York,
2011
).

Supplementary Material

You do not currently have access to this content.