Plasmonic nanostructures attract tremendous attention as they confine electromagnetic fields well below the diffraction limit while simultaneously sustaining extreme local field enhancements. To fully exploit these properties, the identification and classification of resonances in such nanostructures is crucial. Recently, a novel figure of merit for resonance classification has been proposed [Müller et al., J. Phys. Chem. C 124, 24331–24343 (2020)] and its applicability was demonstrated mostly to toy model systems. This novel measure, the energy-based plasmonicity index (EPI), characterizes the nature of resonances in molecular nanostructures. The EPI distinguishes between either a single-particle-like or a plasmonic nature of resonances based on the energy space coherence dynamics of the excitation. To advance the further development of this newly established measure, we present here its exemplary application to characterize the resonances of graphene nanoantennas. In particular, we focus on resonances in a doped nanoantenna. The structure is of interest, as a consideration of the electron dynamics in real space might suggest a plasmonic nature of selected resonances in the low doping limit but our analysis reveals the opposite. We find that in the undoped and moderately doped nanoantenna, the EPI classifies all emerging resonances as predominantly single-particle-like, and only after doping the structure heavily, the EPI observes plasmonic response.

1.
M. M.
Müller
,
M.
Kosik
,
M.
Pelc
,
G. W.
Bryant
,
A.
Ayuela
,
C.
Rockstuhl
, and
K.
Słowik
, “
Energy-based plasmonicity index to characterize optical resonances in nanostructures
,”
J. Phys. Chem. C
124
,
24331
24343
(
2020
).
2.
M. A.
Cazalilla
,
J. S.
Dolado
,
A.
Rubio
, and
P. M.
Echenique
, “
Plasmonic excitations in noble metals: The case of Ag
,”
Phys. Rev. B
61
,
8033
8042
(
2000
).
3.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science & Business Media
,
2007
).
4.
M.
Pelton
,
J.
Aizpurua
, and
G.
Bryant
, “
Metal-nanoparticle plasmonics
,”
Laser Phot. Rev.
2
,
136
159
(
2008
).
5.
V.
Giannini
,
A. I.
Fernández-Domínguez
,
S. C.
Heck
, and
S. A.
Maier
, “
Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters
,”
Chem. Rev.
111
,
3888
3912
(
2011
).
6.
F. H.
Koppens
,
D. E.
Chang
, and
F. J.
García de Abajo
, “
Graphene plasmonics: A platform for strong light–matter interactions
,”
Nano Lett.
11
,
3370
3377
(
2011
).
7.
M. S.
Tame
,
K.
McEnery
,
Ş.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M.
Kim
, “
Quantum plasmonics
,”
Nat. Phys.
9
,
329
340
(
2013
).
8.
G. W.
Bryant
,
E.
Waks
, and
J. R.
Krenn
, “
Plasmonics: The rise of quantum effects
,”
Opt. Photonics News
25
,
50
53
(
2014
).
9.
S. I.
Bozhevolnyi
and
N. A.
Mortensen
, “
Plasmonics for emerging quantum technologies
,”
Nanophotonics
6
,
1185
1188
(
2017
).
10.
J.
Takahara
,
S.
Yamagishi
,
H.
Taki
,
A.
Morimoto
, and
T.
Kobayashi
, “
Guiding of a one-dimensional optical beam with nanometer diameter
,”
Opt. Lett.
22
,
475
477
(
1997
).
11.
D. K.
Gramotnev
and
S. I.
Bozhevolnyi
, “
Plasmonics beyond the diffraction limit
,”
Nat. Photonics
4
,
83
(
2010
).
12.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
13.
J.
Melendez
,
R.
Carr
,
D. U.
Bartholomew
,
K.
Kukanskis
,
J.
Elkind
,
S.
Yee
,
C.
Furlong
, and
R.
Woodbury
, “
A commercial solution for surface plasmon sensing
,”
Sens. Actuator B Chem.
35
,
212
216
(
1996
).
14.
K.
Awazu
,
C.
Rockstuhl
,
M.
Fujimaki
,
N.
Fukuda
,
J.
Tominaga
,
T.
Komatsubara
,
T.
Ikeda
, and
Y.
Ohki
, “
High sensitivity sensors made of perforated waveguides
,”
Opt. Expr.
15
,
2592
2597
(
2007
).
15.
C.
Lee
,
F.
Dieleman
,
J.
Lee
,
C.
Rockstuhl
,
S. A.
Maier
, and
M.
Tame
, “
Quantum plasmonic sensing: Beyond the shot-noise and diffraction limit
,”
ACS Photonics
3
,
992
999
(
2016
).
16.
J. T.
Kim
,
Y.-J.
Yu
,
H.
Choi
, and
C.-G.
Choi
, “
Graphene-based plasmonic photodetector for photonic integrated circuits
,”
Opt. Expr.
22
,
803
808
(
2014
).
17.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
, “
Plasmon-induced hot carrier science and technology
,”
Nat. Nanotechnol.
10
,
25
(
2015
).
18.
J.
Zhang
,
Z.
Zhu
,
W.
Liu
,
X.
Yuan
, and
S.
Qin
, “
Towards photodetection with high efficiency and tunable spectral selectivity: Graphene plasmonics for light trapping and absorption engineering
,”
Nanoscale
7
,
13530
13536
(
2015
).
19.
P.
Yu
,
J.
Wu
,
E.
Ashalley
,
A.
Govorov
, and
Z.
Wang
, “
Dual-band absorber for multispectral plasmon-enhanced infrared photodetection
,”
J. Phys. D: Appl. Phys.
49
,
365101
(
2016
).
20.
L. R.
Hirsch
,
R. J.
Stafford
,
J. A.
Bankson
,
S. R.
Sershen
,
B.
Rivera
,
R.
Price
,
J. D.
Hazle
,
N. J.
Halas
, and
J. L.
West
, “
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
13549
13554
(
2003
).
21.
X.
Qian
,
X.-H.
Peng
,
D. O.
Ansari
,
Q.
Yin-Goen
,
G. Z.
Chen
,
D. M.
Shin
,
L.
Yang
,
A. N.
Young
,
M. D.
Wang
, and
S.
Nie
, “
In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags
,”
Nat. Biotechnol.
26
,
83
90
(
2008
).
22.
L.
Ju
,
B.
Geng
,
J.
Horng
,
C.
Girit
,
M.
Martin
,
Z.
Hao
,
H. A.
Bechtel
,
X.
Liang
,
A.
Zettl
,
Y. R.
Shen
et al., “
Graphene plasmonics for tunable terahertz metamaterials
,”
Nat. Nanotechnol.
6
,
630
634
(
2011
).
23.
O.
Hess
,
J. B.
Pendry
,
S. A.
Maier
,
R. F.
Oulton
,
J. M.
Hamm
, and
K. L.
Tsakmakidis
, “
Active nanoplasmonic metamaterials
,”
Nat. Mater.
11
,
573
584
(
2012
).
24.
S.
Mühlig
,
A.
Cunningham
,
J.
Dintinger
,
T.
Scharf
,
T.
Bürgi
,
F.
Lederer
, and
C.
Rockstuhl
, “
Self-assembled plasmonic metamaterials
,”
Nanophotonics
2
,
211
240
(
2013
).
25.
A. F.
Koenderink
, “
Plasmon nanoparticle array waveguides for single photon and single plasmon sources
,”
Nano Lett.
9
,
4228
4233
(
2009
).
26.
Y.
Chen
,
P.
Lodahl
, and
A. F.
Koenderink
, “
Dynamically reconfigurable directionality of plasmon-based single photon sources
,”
Phys. Rev. B
82
,
081402
(
2010
).
27.
F. J.
Garc de Abajo
, “
Graphene plasmonics: Challenges and opportunities
,”
ACS Photonics
1
,
135
152
(
2014
).
28.
P. A. D.
Gonçalves
and
N. M. R.
Peres
,
An Introduction to Graphene Plasmonics
(
World Scientific
,
2016
).
29.
T.
Christensen
,
W.
Wang
,
A.-P.
Jauho
,
M.
Wubs
, and
N. A.
Mortensen
, “
Classical and quantum plasmonics in graphene nanodisks: Role of edge states
,”
Phys. Rev. B
90
,
241414
(
2014
).
30.
T.
Yamada
,
J.
Kim
,
M.
Ishihara
, and
M.
Hasegawa
, “
Low-temperature graphene synthesis using microwave plasma CVD
,”
J. Phys. D: Appl. Phys.
46
,
063001
(
2013
).
31.
E.
Jabari
,
F.
Ahmed
,
F.
Liravi
,
E. B.
Secor
,
L.
Lin
, and
E.
Toyserkani
, “
2D printing of graphene: A review
,”
2D Mater.
6
,
042004
(
2019
).
32.
S.
Thongrattanasiri
,
A.
Manjavacas
, and
F. J.
García de Abajo
, “
Quantum finite-size effects in graphene plasmons
,”
ACS Nano
6
,
1766
1775
(
2012
).
33.
A.
Manjavacas
,
S.
Thongrattanasiri
, and
F. J.
García de Abajo
, “
Plasmons driven by single electrons in graphene nanoislands
,”
Nanophotonics
2
,
139
151
(
2013
).
34.
W.
Yan
and
N. A.
Mortensen
, “
Nonclassical effects in plasmonics: An energy perspective to quantify nonclassical effects
,”
Phys. Rev. B
93
,
115439
(
2016
).
35.
G.
Piccini
,
R. W.
Havenith
,
R.
Broer
, and
M.
Stener
, “
Gold nanowires: A time-dependent density functional assessment of plasmonic behavior
,”
J. Phys. Chem. C
117
,
17196
17204
(
2013
).
36.
L.
Bursi
,
A.
Calzolari
,
S.
Corni
, and
E.
Molinari
, “
Quantifying the plasmonic character of optical excitations in nanostructures
,”
ACS Photonics
3
,
520
525
(
2016
).
37.
T.
Noguchi
,
T.
Shimamoto
, and
K.
Watanabe
, “
Photoabsorption spectra of graphitic nanostructures by time-dependent density-functional theory
,”
e-J. Surf. Sci. Nanotechnol.
3
,
439
443
(
2005
).
38.
A.
Manjavacas
,
F.
Marchesin
,
S.
Thongrattanasiri
,
P.
Koval
,
P.
Nordlander
,
D.
Sanchez-Portal
, and
F. J.
García de Abajo
, “
Tunable molecular plasmons in polycyclic aromatic hydrocarbons
,”
ACS Nano
7
,
3635
3643
(
2013
).
39.
M.
Ezawa
, “
Metallic graphene nanodisks: Electronic and magnetic properties
,”
Phys. Rev. B
76
,
245415
(
2007
).
40.
A.
Güçlü
,
P.
Potasz
, and
P.
Hawrylak
, “
Excitonic absorption in gate-controlled graphene quantum dots
,”
Phys. Rev. B
82
,
155445
(
2010
).
41.
W.
Jaskólski
,
A.
Ayuela
,
M.
Pelc
,
H.
Santos
, and
L.
Chico
, “
Edge states and flat bands in graphene nanoribbons with arbitrary geometries
,”
Phys. Rev. B
83
,
235424
(
2011
).
42.
J. D.
Cox
and
F. J.
García de Abajo
, “
Electrically tunable nonlinear plasmonics in graphene nanoislands
,”
Nat. Commun.
5
,
5725
(
2014
).
43.
W.
Wang
,
T.
Christensen
,
A.-P.
Jauho
,
K. S.
Thygesen
,
M.
Wubs
, and
N. A.
Mortensen
, “
Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles
,”
Sci. Rep.
5
,
9535
(
2015
).
44.
P.-G.
Reinhard
,
M.
Brack
, and
O.
Genzken
, “
Random-phase approximation in a local representation
,”
Phys. Rev. A
41
,
5568
(
1990
).
45.
T.
Raitza
,
H.
Reinholz
,
P.
Reinhard
,
G.
Röpke
, and
I.
Broda
, “
Spatially resolved collective excitations of nano-plasmas via molecular dynamics simulations and fluid dynamics
,”
New J. Phys.
14
,
115016
(
2012
).
46.
E.
Townsend
and
G. W.
Bryant
, “
Which resonances in small metallic nanoparticles are plasmonic?
J. Opt.
16
,
114022
(
2014
).
47.
R.
Zhang
,
L.
Bursi
,
J. D.
Cox
,
Y.
Cui
,
C. M.
Krauter
,
A.
Alabastri
,
A.
Manjavacas
,
A.
Calzolari
,
S.
Corni
,
E.
Molinari
et al., “
How to identify plasmons from the optical response of nanostructures
,”
ACS Nano
11
,
7321
7335
(
2017
).
48.
S.
Bernadotte
,
F.
Evers
, and
C. R.
Jacob
, “
Plasmons in molecules
,”
J. Phys. Chem. C
117
,
1863
1878
(
2013
).
49.
C. M.
Krauter
,
S.
Bernadotte
,
C. R.
Jacob
,
M.
Pernpointner
, and
A.
Dreuw
, “
Identification of plasmons in molecules with scaled ab initio approaches
,”
J. Phys. Chem. C
119
,
24564
24573
(
2015
).
50.
E.
Townsend
,
A.
Debrecht
, and
G. W.
Bryant
, “
Approaching the quantum limit for nanoplasmonics
,”
J. Mater. Res.
30
,
2389
2399
(
2015
).
51.
P. K.
Jain
, “
Plasmon-in-a-box: On the physical nature of few-carrier plasmon resonances
,”
J. Phys. Chem. Lett.
5
,
3112
3119
(
2014
).
52.
T.
Yasuike
,
K.
Nobusada
, and
M.
Hayashi
, “
Collectivity of plasmonic excitations in small sodium clusters with ring and linear structures
,”
Phys. Rev. A
83
,
013201
(
2011
).
53.
J. M.
Fitzgerald
,
S.
Azadi
, and
V.
Giannini
, “
Quantum plasmonic nanoantennas
,”
Phys. Rev. B
95
,
235414
(
2017
).
54.
D.
Pines
and
D.
Bohm
, “
A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions
,”
Phys. Rev.
85
,
338
(
1952
).
55.
P.
Wallace
, “
The band theory of graphite
,”
Phys. Rev.
71
,
622
634
(
1947
).
56.
P.
Potasz
,
A. D.
Güçlü
, and
P.
Hawrylak
, “
Spin and electronic correlations in gated graphene quantum rings
,”
Phys. Rev. B
82
,
075425
(
2010
).
57.
J. D.
Cox
and
F. J.
García de Abajo
, “
Nonlinear graphene nanoplasmonics
,”
Acc. Chem. Res.
52
,
2536
2547
(
2019
).
58.
V.
Gusynin
,
S.
Sharapov
, and
J.
Carbotte
, “
On the universal AC optical background in graphene
,”
New J. Phys.
11
,
095013
(
2009
).
You do not currently have access to this content.