Fe acts as an electron trap in gallium oxide (Ga2O3), thereby producing a semi-insulating material that can be used in device fabrication. However, such trapping can lead to negative effects when Fe is unintentionally incorporated into bulk crystals or thin films. In this work, photoinduced electron paramagnetic resonance (photo-EPR) is used to investigate carrier capture at Fe in β-Ga2O3. Two crystals doped with 8 × 1017 cm−3 and 5 × 1018 cm−3 Fe and one Mg-doped crystal containing 7 × 1016 cm−3 unintentional Fe are studied by illuminating with LEDs of photon energies 0.7–4.7 eV. Steady state photo-EPR results show that electrons excited from Ir, an unintentional impurity in bulk crystals, are trapped at Fe during illumination with photon energy greater than 2 eV. Significantly, however, trapping at Fe also occurs in the crystals where Ir does not participate. In such cases, we suggest that excitation of intrinsic defects such as oxygen or gallium vacancies are responsible for trapping of carriers at Fe. The results imply that the investigation of intrinsic defects and their interaction with Fe is necessary to realize stable and reliable Ga2O3:Fe devices.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
4.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
, “
Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
,
052101
(
2018
).
5.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
Bulk crystal growth of Ga2O3
,” in
Proceedings of Oxide-Based Materials and Devices IX (SPIE OPTO)
, San Francisco, CA (SPIE,
2018
), Vol. 10533.
6.
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
M.
Albrecht
,
D.
Klimm
,
M.
Pietsch
,
M.
Brutzam
,
R.
Bertram
,
S.
Ganschow
, and
R.
Fornari
, “
Czochralski growth and characterization of β-Ga2O3 single crystals
,”
Cryst. Res. Technol.
45
,
1229
(
2010
).
7.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Anomalous Fe diffusion in Si-ion-implanted β–Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers
,”
Appl. Phys. Lett.
106
,
032105
(
2015
).
8.
J. F.
McGlone
,
Z.
Xia
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S.
Ringel
, and
A. R.
Arehart
, “
Identification of critical buffer traps in Si δ-doped β-Ga2O3 MESFETs
,”
Appl. Phys. Lett.
115
,
153501
(
2019
).
9.
A.
Mauze
,
Y.
Zhang
,
T.
Mates
,
F.
Wu
, and
J. S.
Speck
, “
Investigation of unintentional Fe incorporation in (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
115
,
052102
(
2019
).
10.
C.
Joishi
,
Z.
Xia
,
J.
McGlone
,
Y.
Zhang
,
A. R.
Arehart
,
S.
Ringel
,
S.
Lodha
, and
S.
Rajan
, “
Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors
,”
Appl. Phys. Lett.
113
,
123501
(
2018
).
11.
C. A.
Lenyk
,
N. C.
Giles
,
E. M.
Scherrer
,
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
,
J. D.
Blevins
,
D. L.
Dorsey
, and
S.
Mou
, “
Ir4+ ions in β-Ga2O3 crystals: An unintentional deep donor
,”
J. Appl. Phys.
125
,
045703
(
2019
).
12.
S.
Bhandari
,
M. E.
Zvanut
, and
J. B.
Varley
, “
Optical absorption of Fe in doped Ga2O3
,”
J. Appl. Phys.
126
,
165703
(
2019
).
13.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
14.
P.
Deak
,
Q. D.
Ho
,
F.
Seemann
,
B.
Aradi
,
M.
Lorke
, and
T.
Frauenheim
, “
Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in β-Ga2O3
,”
Phys. Rev. B
95
,
075208
(
2017
).
15.
J. B.
Varley
,
H.
Peelaers
,
A.
Janotti
, and
C. G.
Van deWalle
, “
Hydrogenated cation vacancies in semiconducting oxides
,”
J. Phys.: Condens. Matter
23
(
9
),
334212
(
2011
).
16.
P.
Weiser
,
M.
Stavola
,
W. B.
Fowler
,
Y.
Qin
, and
S.
Pearton
, “
Structure and vibrational properties of the dominant O-H center in β-Ga2O3
,”
Appl. Phys. Lett.
112
,
232104
(
2018
).
17.
J.
Weil
and
J.
Bolton
,
Electron Paramagnetic Resonance Elementary Theory and Practical Applications
(
John Wiley & Sons, Inc.
,
2007
), pp.
545
546
.
18.
M. L.
Meil’man
, “
EPR of Fe3+ ions in β-Ga2O3 crystals
,”
Sov. Phys. Solid State
11
,
1403
(
1969
). [Tverd. Tela 11(6),
1730
1732
(
1969
)].
19.
R.
Büscher
and
G.
Lehmann
, “
Correlation of zero-field splittings and site distortions. IX. Fe3+ and Cr3+ in β-Ga2O3
,”
Z. Naturforsch.
42
,
67
(
1987
).
20.
M. E.
Ingebrigtsen
,
J. B.
Varley
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
, and
L.
Vines
, “
Iron and intrinsic deep level states in Ga2O3
,”
Appl. Phys. Lett.
112
,
042104
(
2018
).
21.
J. L.
Lyons
, “
A survey of acceptor dopants for β-Ga2O3
,”
Semicond. Sci. Technol.
33
,
05LT02
(
2018
).
22.
C. A.
Lenyk
,
T. D.
Gustafson
,
S. A.
Basun
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Experimental determination of the (0/−) level for Mg acceptors in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
116
,
142101
(
2020
).
23.
S.
Bhandari
and
M. E.
Zvanut
, “
Optical transitions for impurities in Ga2O3 as determined by photo-induced electron paramagnetic resonance spectroscopy
,”
J. Appl. Phys.
127
,
065704
(
2020
).
24.
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
, and
N. C.
Giles
, “
Gallium vacancies in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
110
,
202104
(
2017
).
25.
N. T.
Son
,
Q. D.
Ho
,
K.
Goto
,
H.
Abe
,
T.
Ohshima
,
B.
Monemar
,
Y.
Kumagai
,
K.
Frauenheim
, and
P.
Deak
, “
Electron paramagnetic resonance and theoretical study of gallium vacancy in β-Ga2O3
,”
Appl. Phys. Lett.
117
,
032101
(
2020
).
26.
D.
Skachkov
,
W. R. L.
Lambrecht
,
H. J.
von Bardeleben
,
U.
Gerstmann
,
Q. D.
Ho
, and
P.
Deák
, “
Computational identification of Ga-vacancy related electron paramagnetic resonance centers in β-Ga2O3
,”
J. Appl. Phys.
125
,
185701
(
2019
).
27.
T. D.
Gustafson
,
C. A.
Lenyk
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Deep donor behavior of iron in β-Ga2O3 crystals: Establishing the Fe4+/3+ level
,”
J. Appl. Phys.
128
,
145704
(
2020
).
28.
E.
Korhonen
,
F.
Tuomisto
,
D.
Gogova
,
G.
Wagner
,
M.
Baldini
,
Z.
Galazka
,
R.
Schewski
, and
M.
Albrecht
, “
Electrical compensation by Ga vacancies in Ga2O3 thin films
,”
Appl. Phys. Lett.
106
,
242103
(
2015
).
You do not currently have access to this content.