Lentil seeds have been packed in a dielectric barrier device and exposed for several minutes to a cold atmospheric plasma generated in helium with/without a reactive gas (nitrogen or oxygen). While no impact is evidenced on germination rates (caping nearly at 100% with/without plasma exposure), seeds’ vigor is clearly improved with a median germination time decreasing from 1850 min (31 h) to 1500 min (26 h), hence representing a time saving of at least 5 h. We show that the admixture of nitrogen to helium can further increase this time saving up to 8 h. Contrarily, we demonstrate that the addition of molecular oxygen to the helium discharge does not promote seeds’ vigor. Whatever the plasma chemistry utilized, these biological effects are accompanied with strong hydrophilization of the seed coating (with a decrease in contact angles from 118° to 25°) as well as increased water absorption (water uptakes measured 8 h after imbibition are close to 50% for plasma-treated seeds instead of 37% for seeds from the control group). A follow-up of the seeds over a 45-days aging period shows the sustainability of the plasma-triggered biological effects: whatever the plasma treatment, seeds’ vigor remains stable and much higher than for seeds unexposed to plasma. For these reasons, the seed-packed dielectric barrier device supplied with a He–N2 gas mixture can be considered as a relevant dry atmospheric priming plasma in the same way as those used in routine by seed companies.

1.
M.
Black
and
J.
Derek Bewley
,
Seed Technology and Its Biological Basis
(Sheffield Academic Press, Ltd.,
2000
), ISBN: 1-84127-043-1.
2.
P. M.
Dezfuli
,
F.
Sharif-Zadeh
, and
M.
Janmohammadi
, “
Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L)
,”
ARPN J. Agric. Biol. Sci.
3
(
3
), 22–25 (
2008
), ISSN: 1990-6145; ISSN: 1990-6145.
3.
K.
Ghassemi-Golezani
,
A. A.
Aliloo
,
M.
Valizadeh
, and
M.
Moghaddam
, “
Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik)
,”
J. Food Agric. Environ.
6
(
2
),
222
226
(
2008
).
4.
C.
Eduardo da Silva Oliveira
,
F.
Steiner
,
A. M.
Zuffo
,
T.
Zoz
,
C. Z.
Alves
,
V.
Cabrera
, and
B.
de Aguiar
, “
Seed priming improves the germination and growth rate of melon seedlings under saline stress
,”
Cienc. Rural
49
(
7
),
e20180588
(
2019
), ISSNe: 1678-4596.
5.
M. D.
Madsen
,
L.
Svejcar
,
J.
Radke
, and
A.
Hulet
, “
Inducing rapid seed germination of native cool season grasses with solid matrix priming and seed extrusion technology
,”
PLoS ONE
13
(
10
),
e0204380
(
2018
).
6.
C.
Barboza da Silva
,
J.
Marcos-Filho
,
P.
Jourdan
, and
M. A.
Bennett
, “
Performance of bell pepper seeds in response to drum priming with addition of 24-epibrassinolide
,”
HortScience
50
(
6
),
873
878
(
2015
).
7.
A.
Gómez-Ramírez
,
C.
López-Santos
,
M.
Cantos
,
J. L.
García
,
R.
Molina
,
J.
Cotrino
,
J. P.
Espinós
, and
A. R.
González-Elipe
, “
Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation
,”
Sci. Rep.
7
,
5924
(
2017
).
8.
E.
Bormashenko
,
R.
Grynyov
,
Y.
Bormashenko
, and
E.
Drori
, “
Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds
,”
Sci. Rep.
2
,
741
(
2012
).
9.
S.
Zivkovic
,
N.
Puac
,
Z.
Giba
,
D.
Grubisic
, and
Z. L. J.
Petrovic
, “
The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds
,”
SeedSci. Technol.
32
,
693
701
(
2004
).
10.
M.
Dhayala
,
S.-Y.
Lee
, and
S.-U.
Park
, “
Using low-pressure plasma for Carthamus tinctorium L. seed surface modification
,”
Vacuum
80
(
5
),
499
506
(
2006
).
11.
S.-H.
Ji
,
K.-H.
Choi
,
A.
Pengkita
,
J. S.
Im
,
J. S.
Kim
,
Y. H.
Kim
,
Y.
Park
,
E. J.
Hong
,
S. K.
Jung
,
E.-H.
Choi
, and
G.
Park
, “
Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach
,”
Arch. Biochem. Biophys.
605
,
117
128
(
2016
).
12.
T.
Stolárik
,
M.
Henselová
,
M.
Martinka
,
O.
Novák
,
A.
Zahoranová
, and
M.
Černák
, “
Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L)
,”
Plasma Chem. Plasma Process.
35
,
659
676
(
2015
).
13.
E.
Bormashenko
,
Y.
Shapira
,
R.
Grynyov
,
G.
Whyman
,
Y.
Bormashenko
, and
E.
Drori
, “
Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)
,”
J. Exp. Bot.
66
(
13
),
4013
4021
(
2015
).
14.
L. K.
Randeniya
and
G. J. J. B.
de Groot
, “
Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review
,”
Plasma Processes Polym.
12
(
7
),
608
623
(
2015
).
15.
M.
Bafoil
,
A.
Le Ru
,
N.
Merbahi
,
O.
Eichwald
,
C.
Dunand
, and
M.
Yousfi
, “
New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsisthaliana seeds under osmotic and saline stresses
,”
Sci. Rep.
4
,
5859
(
2014
).
16.
J. C.
Volin
,
F. S.
Denes
,
R. A.
Young
, and
S. M. T.
Park
, “
Modification of seed germination performance through cold plasma chemistry technology
,”
Crop Sci.
40
,
1706
1718
(
2000
).
17.
J.
Jiang
,
Y.
Lu
,
J.
Li
,
L.
Li
,
X.
He
,
H.
Shao
, and
Y.
Dong
, “
Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt)
,”
PLoS ONE
9
(
5
),
e97753
(
2014
).
18.
B.
Sera
,
V.
Stranak
,
M.
Sery
,
M.
Tichy
, and
P.
Spatenka
, “
Germination of Chenopodium album in response to microwave plasma treatment
,”
Plasma Sci. Technol.
10
,
506
(
2008
).
19.
A. E.
Dubinov
,
N.
Novgorod
,
E. R.
Lazarenko
, and
V. D.
Selemir
, “
Effect of glow discharge air plasma on grain crops seed
,”
IEEE Trans. Plasma Sci.
28
(
1
), 180–183 (
2000
).
20.
M.
Henselová
,
L.
Slováková
,
M.
Martinka
, and
A.
Zahoranová
, “
Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma
,”
Biologia
67
(
3
),
490
497
(
2012
).
21.
A. L.
Mihai
,
D.
Dobrin
,
M.
Magureanu
, and
M. E.
Popa
, “
Positive effect of non-thermal plasma treatment on radish seeds
,”
Rom. Rep. Phys.
66
(
4
),
1110
1117
(
2014
).
22.
K.
Matra
, “
Non-thermal plasma for germination enhancement of radish seeds
,”
Procedia Comput. Sci.
86
,
132
135
(
2016
).
23.
Y.
Meiqianf
,
H.
Mingjing
,
M.
Buzhou
, and
M.
Tengcai
, “
Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield
,”
Plasma Sci. Technol.
7
(
6
), 3143–3147 (
2005
).
24.
M.
Măgureanu
,
R.
Sîrbu
,
D.
Dobrin
, and
M.
Gîdea
, “
Stimulation of the germination and early growth of tomato seeds by non-thermal plasma
,”
Plasma Chem. Plasma Process.
38
,
989
1001
(
2018
).
25.
J.
Jiang
,
X.
He
,
L.
Li
,
J.
Li
,
H.
Shao
,
Q.
Xu
,
R.
Ye
, and
Y.
Dong
, “
Effect of cold plasma treatment on seed germination and growth of wheat
,”
Plasma Sci. Technol.
16
(
1
), 54–58 (
2014
).
26.
B.
Sera
,
P.
Spatenka
,
M.
Sery
,
N.
Vrchotova
, and
I.
Hruskova
, “
Influence of plasma treatment on wheat and oat germination and early growth
,”
IEEE Trans. Plasma Sci.
38
, 2963–2968 (
2010
), see https://www.researchgate.net/profile/Bozena_Sera/publication/272173327_Influence_of_plasma_treatment_on_wheat_and_oat_germination_and_early_growth/links/54e10b6d0cf2953c22b98ddb.pdf.
27.
D.
Dobrin
,
M.
Magureanu
,
N. B.
Bogdan Mandache
, and
M.-D.
Ionita
, “
The effect of non-thermal plasma treatment on wheat germination and early growth
,”
Innov. Food Sci. Emerg. Technol.
29
,
255
260
(
2015
).
28.
L.
Ling
,
L.
Jiangang
,
S.
Minchong
,
Z.
Chunlei
, and
D.
Yuanhua
, “
Cold plasma treatment enhances oilseed rape seed germination under drought stress
,”
Sci. Rep.
5
,
13033
(
2015
).
29.
H. H.
Chen
,
H. C.
Chang
,
Y. K.
Chen
,
C. L.
Hung
,
S. Y.
Lin
, and
Y. S.
Chen
, “
An improved process for high nutrition of germinated brown rice production: Low-pressure plasma
,”
Food Chem.
191
,
120
127
(
2016
).
30.
L.
Ling
,
J.
Jiafeng
,
L.
Jiangang
,
S.
Minchong
,
H.
Xin
,
S.
Hanliang
, and
D.
Yuanhua
, “
Effects of cold plasma treatment on seed germination and seedling growth of soybean
,”
Sci. Rep.
4
,
5859
(
2015
).
31.
M.
Brasoveanu
,
M. R.
Nemtanu
,
C.
Surdu-Bob
,
G.
Karaca
, and
I.
Erper
, “
Effect of glow discharge plasma on germination and fungal load of some cereal seeds
,”
Rom. Rep. Phys.
67
(
2
),
617
624
(
2015
).
32.
M.
Selcuk
,
L.
Oksuz
, and
P.
Basaran
, “
Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment
,”
Bioresour. Technol.
99
(
11
),
5104
5109
(
2008
).
33.
A.
Mitra
,
Y.-F.
Li
,
T. G.
Klämpfl
,
T.
Shimizu
,
J.
Jeon
,
G. E.
Morfill
, and
J. L.
Zimmermann
, “
Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma
,”
Food Bioprocess Technol.
7
,
645
653
(
2014
).
34.
D.
Butscher
,
H.
Van Loon
,
A.
Waskow
,
P.
Rudolf von Rohr
, and
M.
Schuppler
, “
Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge
,”
Int. J. Food Microbiol.
238
,
222
232
(
2016
).
35.
M.
Bafoil
,
A.
Jemmat
,
Y.
Martniez
,
N.
Merbahi
,
O.
Eichwald
,
C.
Dunand
, and
M.
Yousfi
, “
Effects of low-temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth
,”
PLoS ONE
13
(
4
),
e0195512
.
36.
S.
Kumar
,
S.
Barpete
,
J.
Kumar
,
P.
Gupta
, and
A.
Sarker
, Global lentil production:constraints and strategies, SATSA Mukhapatra—Annual Technical Issue 17 (2013), ISSN 0971-975X.
37.
Y. A.
El-Kassaby
,
I.
Moss
,
D.
Kolotelo
, and
M.
Stoehr
, “
Seed germination: Mathematical representation and parameters extraction
,”
Forest Sci.
54
(
2
),
220
227
(
2008
).
38.
R. L.
Willan
, A Guide to Forest Seed Handling, FAO Forestry paper, Chapter 9, 20/2, M-31, ISBN 92-5-102291-7 (1987), see http://www.fao.org/3/AD232E/AD232E00.htm#TOC.
39.
See http://www.eaudeparis.fr/la-qualite-de-leau-a-paris/ for the corresponding datasheet of water quality (on the main page, click on “district 5” of the Paris city map).
40.
Q.
Xiong
,
X.
Lu
,
J.
Liu
,
Y.
Xian
,
Z.
Xiong
,
F.
Zou
,
C.
Zou
,
W.
Gong
,
J.
Hu
,
K.
Chen
,
X.
Pei
,
Z.
Jiang
, and
Y.
Pan
, “
Temporal and spatial resolved optical emission behaviors ofa cold atmospheric pressure plasma jet
,”
J. Appl. Phys.
106
(
8
),
083302
(
2009
).
41.
K.
Urabe
,
O.
Sakai
, and
K.
Tachibana
, “
Combined spectroscopic methods for electron-density diagnostics inside atmospheric-pressure glow discharge using He/N2 gas mixture
,”
J. Phys. D: Appl. Phys.
44
,
11
(
2011
).
42.
G. M.
Petrov
,
J. P.
Matte
,
I.
Peres
,
J.
Margot
,
T.
Sadi
,
J.
Hubert
,
K. C.
Tran
,
L. L.
Alves
,
J.
Loureiro
,
C. M.
Ferreira
,
V.
Guerra
, and
G.
Gousset
, “
Numerical modeling of a He-N2 capillary surface wave discharge at atmospheric pressure
,”
Plasma Chem. Plasma Process.
20
,
2
(
2000
).
43.
C.
Lazarou
,
D.
Koukounis
,
A. S.
Chiper
,
C.
Costin
,
I.
Topala
, and
G. E.
Georghiou
, “
Numerical modeling of the effect of the level of nitrogen impurities in a helium parallel plate dielectric barrier discharge
,”
Plasma Sources Sci. Technol.
24
(
3
),
035012
(
2015
).
44.
G.
Nersisyan
and
W. G.
Graham
, “
Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium
,”
Plasma Sources Sci. Technol.
13
,
582
587
(
2004
).
45.
N. K.
Bibinov
,
A. A.
Fateev
, and
K.
Wiesemann
, “
Variations of the gas temperature in He/N2 barrier discharges
,”
Plasma Sources Sci. Technol.
10
(
4
),
579
(
2001
).
46.
K. V.
Kozlov
,
H.-E.
Wagner
,
R.
Brandenburg
, and
P.
Michel
, “
Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure
,”
J. Phys. D: Appl. Phys.
34
(
21
),
3164
(
2001
).
47.
A. A.
Heneral
and
S. V.
Avtaeva
, “
Atmospheric pressure plasma jets generated by the DBD in argon-air, helium-air, and helium-water vapour mixtures
,”
J. Phys. D: Appl. Phys.
53
(
19
),
195201
(
2020
).
48.
S.
Müller
,
T.
Krähling
,
D.
Veza
,
V.
Horvatic
,
C.
Vadla
, and
J.
Franzke
, “
Operation modes of the helium dielectric barrier discharge for soft ionization
,”
Spectrochim. Acta Part B
85
,
104
111
(
2013
).
49.
L.
Li
,
A.
Nikiforov
,
Q.
Xiong
,
X.
Lu
,
L.
Taghizadeh
, and
C.
Leys
, “
Measurement of OH radicals at state X 2Π in an atmospheric-pressure micro-flow dc plasma with liquid electrodes in He, Ar and N2 by means of laser-induced fluorescence spectroscopy
,”
J. Phys. D: Appl. Phys.
45
,
12
(
2012
).
50.
N. K.
Bibinov
,
A. A.
Fateev
, and
K.
Wiesemann
, “
On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures
,”
J. Phys. D: Appl. Phys.
34
(
12
),
1819
(
2001
).
51.
D.
Lee
,
J. M.
Park
,
S. H.
Hong
, and
Y.
Kim
, “
Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium–oxygen mixture
,”
IEEE Trans. Plasma Sci.
33
(
2
),
949
957
(
2005
).
52.
S. A.
Norberg
,
E.
Johnsen
, and
M. J.
Kushner
, “
Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air
,”
Plasma Sources Sci. Technol.
24
(
3
),
035026
(
2015
).
53.
W. S.
Kang
,
H.-S.
Kim
, and
S. H.
Hong
, “
Gas temperature effect on discharge-mode characteristics of atmospheric-pressure dielectric barrier discharge in a helium-oxygen mixture
,”
IEEE Trans. Plasma Sci.
38
(
8
),
1982
1990
(
2010
).
54.
D.
Xiao
,
C.
Cheng
,
J.
Shen
,
Y.
Lan
,
H.
Xie
,
X.
Shu
,
Y.
Meng
,
J.
Li
, and
P. K.
Chu
, “
Characteristics of atmospheric-pressure non-thermal N2 and N2/O2 gas mixture plasma jet
,”
J. Appl. Phys.
115
,
033303
(
2014
).
55.
H.
Dvoráková
,
J.
Cech
,
M.
Stupavská
,
L.
Prokeš
,
J.
Jurmanová
,
V.
Buršíková
,
J.
Ráhel’
, and
P.
St’ahel
, “
Fast surface hydrophilization via atmospheric pressure plasma polymerization for biological and technical applications
,”
Polymers
11
,
1613
(
2019
).
56.
P.
Cloetens
,
R.
Mache
,
M.
Schlenker
, and
S.
Lerbs-Mache
, “
Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network
,”
Proc. Natl. Acad. Sci. U.S.A.
103
(
39
),
14626
14630
(
2006
).
You do not currently have access to this content.