We present a computational study that demonstrates the concept of a microwave excited plasma flow sensor. The geometric configuration consists of an array of circularly arranged “receiver” (ground) electrodes that surround a central “transmitter” (excited) electrode that is flush mounted on a surface exposed to incident flow. Microwave excitation is used to strike a low-temperature plasma between the transmitter electrode and the receiver electrode. Depending on the flow direction, a more intense plasma kernel is formed between the transmitter electrode and the downstream electrode for sufficiently strong excitation conditions. The differential current between the receiver electrodes is used to establish the flow direction and magnitude. The computational model establishes the effectiveness of the concept as a flow sensor. Parametric studies involving excitation voltages, flow velocities, scale lengths, electrode shape, and excitation frequency are performed. It is observed that the sensitivity of the device to the imposed flow is considerably improved with increasing excitation frequency in the microwave regime.

1.
Y. H.
Li
,
Y.
Wu
,
M.
Zhou
,
C. B.
Su
,
X. W.
Zhang
, and
J. Q.
Zhu
, “
Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation
,”
Exp. Fluids
48
(
6
),
1015
1023
(
2010
).
2.
S.
Roy
, “
Flow actuation using radio frequency in partially ionized collisional plasmas
,”
Appl. Phys. Lett.
86
(
10
),
101502
(
2005
).
3.
Y.
Sung
,
Y.
Kim
,
M. G.
Mungal
, and
M. A.
Cappelli
, “
Aerodynamic modification of flow over bluff objects by plasma actuation
,”
Exp. Fluids
41
(
3
),
479
486
(
2006
).
4.
J. J.
Wang
,
K. S.
Choi
,
L. H.
Feng
,
T. N.
Jukes
, and
R. D.
Whalley
, “
Recent developments in DBD plasma flow control
,”
Prog. Aerosp. Sci.
62
,
52
78
(
2013
).
5.
Y. J.
Choi
,
M.
Gray
,
J.
Sirohi
, and
L. L.
Raja
, “
Static stall alleviation using a rail plasma actuator
,”
J. Phys. D: Appl. Phys.
51
(
26
),
265201
(
2018
).
6.
Y. J.
Choi
,
M.
Gray
,
J.
Sirohi
, and
L. L.
Raja
, “
Measurement of velocity induced by a propagating Arc Magneto-hydrodynamic plasma actuator
,” in 55th AIAA Aerospace Sciences Meeting,
Grapevine, TX
(
AIAA
,
2017
).
7.
N.
Benard
and
E.
Moreau
, “
Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control
,”
Exp. Fluids
55
(11),
1846
(
2014
).
8.
J.
Little
,
T.
Keisuke
,
N.
Munetake
,
I.
Adamovich
, and
M.
Samimy
, “
High lift airfoil leading edge separation control with nanosecond pulse DBD plasma actuators
,” in AIAA 5th Flow Control Conference,
Chicago, IL
(
AIAA
,
2010
).
9.
X.
Zhang
,
Y.
Huang
,
X.
Wang
,
W.
Wang
,
K.
Tang
, and
H.
Li
, “
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
,”
Chin. J. Aeronaut.
29
(
5
),
1237
1246
(
2016
).
10.
N.
Bénard
,
J.
Jolibois
,
E.
Moreau
,
R.
Sosa
,
G.
Artana
, and
G.
Touchard
, “
Aerodynamic plasma actuators: A directional micro-jet device
,”
Thin Solid Films
516
(
19)
,
6660
6667
(
2008
).
11.
K.
Shimizu
,
Y.
Mizuno
, and
M.
Blajan
, “
Basic study on force induction using dielectric barrier microplasma array
,”
Jpn J. Appl. Phys.
54
(
1S
),
01AA07
(
2015
).
12.
D. C.
Collis
, “
The dust problem in hot-wire anemometry
,”
Aeronaut. Quart.
4
(
1
),
93
102
(
1954
).
13.
D.
Walker
,
W.
Ng
, and
M.
Walker
, “
Hot-wire anemometry in supersonic shear layers
,” in 19th AIAA Fluid Dynamics, Plasma Dynamics, and Lasers Conference,
Honolulu, HI
,
8–10 June 1987
(
AIAA
,
Reston, VA
,
1987
).
14.
B. J.
Chratier
,
M.
Arjoandi
, and
B. S.
Cazzolato
, “
An investigation on the application of DBD plasma actuators as pressure sensors
,” in 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,
Orlando, FL
,
5–8 January 2009
(
AIAA
,
Reston, VA
,
2009
).
15.
T.
Vrebalovich
, “
The development of direct and alternating current glow discharge anemometers for the study of turbulence phenomenon in supersonic flow
,”
Ph.D. dissertation
(
California Institue of Techonology
,
1954
).
16.
E. H.
Matlis
,
T. C.
Corke
, and
S. P.
Gogineni
, “
AC Plasma anemometer for hypersonic mach number experiments
,” in ICIASF Record International Congress on Instrumentation in Aerospace Simulation Facilities,
Sendai, Japan
(
IEEE
,
2005
)
.
17.
E.
Matlis
,
T.
Corke
, and
S.
Gogineni
, “Plasma anemometer and method for using same,” U.S. patent 7,275,013 (25 September 2007).
18.
C.
Marshall
,
E.
Matlis
, and
T.
Corke
, “
A.C. plasma anemometer—Characteristics and design
,”
Meas. Sci. Technol.
26,
085902
(
2015
).
19.
S. J.
Smullin
,
C.
Behroozi
, and
D. P.
Julian
, “Method and apparatus of combined anemometer and plasma actuator.” U.S. patent 10495121 B2 (3 December 2019).
20.
B.
Yu
,
E.
Shen
,
P.
Yuan
, and
H.
Shen
, “
Research on the plasma anemometer based on AC glow discharge
,”
J. Sens.
2017
,
1
12
.
21.
B.
Yu
,
P.
Yuan
, and
E.
Shen
, “
Modeling study on the circuit model of AC plasma anemometer
,”
Measurement
112
,
80
87
(
2017
).
22.
B.
Yu
,
P.
Yuan
,
E.
Shen
, and
H.
Shen
, “
Numerical model of A.C. glow discharge plasma anemometer via the coupling of gas flow and plasma model
,”
Eur. Phys. J. Appl. Phys.
81
(
3
),
30801
(
2018
).
23.
“VizGlow 2020 plasma modeling software for multi-dimensional simulations of non-equilibrium glow discharge systems, Software Manual v2.4,” Esgee Technologies.
24.
D.
Levko
and
L. L.
Raja
, “
Effect of frequency on microplasmas driven by microwave excitation
,”
J. Appl. Phys.
118
(
4
),
043303
(
2015
).
25.
S.
Mahadevan
and
L.
Raja
, “
Simulations of direct-current Air glow discharge at pressures ∼1Torr: Discharge model validation
,”
J. Appl. Phys.
107
(
9
),
093304
(
2010
).
26.
D.
Breden
,
L. L.
Raja
,
C. A.
Idicheria
,
P. M.
Najt
, and
S.
Mahadevan
, “
A numerical study of high-pressure non-equilibrium streamers for combustion ignition application
,”
J. Appl. Phys.
114
(
8
),
083302
(
2013
).
27.
D.
Breden
and
L.
Raja
, “
Simulations of nanosecond pulsed plasma in supersonic flows for combustion applications
,”
AIAA J.
50
(
3
),
647
658
(
2012
).
28.
G.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
29.
I. A.
Kossyi
,
A. Y.
Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
, “
Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures
,”
Plasma Sources Sci. Technol.
1
(
3)
, 207 (
1992
).
30.
S.
Pancheshnyi
,
M.
Nudnova
, and
A.
Starikovskii
, “
Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct simulation
,”
Phys. Rev. E
71
(
1)
, 016407 (
2005
).
31.
A. A.
Ionin
,
I. V.
Kochetov
,
A. P.
Napartovich
, and
N. N.
Yuryshev
, “
Physics and engineering of singlet delta oxygen production in Low temperature plasma
,”
J. Phys. D: Appl. Phys.
40
,
R25
R61
(
2007
).
32.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
, “
Self-consistent two-dimensional modelling of cold atmospheric-pressure plasma jets/bullets
,”
Plasma Sources Sci. Technol.
21
,
034011
(
2012
).
33.
K.
Kourtzanidis
and
L. L.
Raja
, “
Three-electrode sliding nanosecond dielectric barrier discharge
,”
AIAA J.
55
(
4
),
1393
1404
(
2017
).
34.
T.
Deconinck
and
L. L.
Raja
, “
Modeling of mode transition behavior in argon microhollow cathode discharges
,”
Plasma Processes Polym.
6
(
5)
,
335
346
(
2009
).
You do not currently have access to this content.