We report the band structure of Ba-deficient BaTiO3 as a p-type semiconductor, studied by a combination of light reflectance and photoelectron yield spectroscopy. Two acceptor levels were observed at the tail of a valence band. As the quantity of Ba vacancies increased, the density of state of the two acceptor levels also increased. The levels of the conduction band minimum and the valence band maximum shifted far away from the vacuum level, but the bandgap seems to be independent of Ba deficient concentration. For classical semiconductors such as Si and GaAs, the observation of impurity levels is restricted to low temperatures (∼20 K) owing to their narrow bandgaps. Oxide semiconductors have now been demonstrated with wide bandgaps and acceptor levels, at normal operating temperatures, which could lead to new device designs in the future.

1.
D. M.
Smyth
,
The Defect Chemistry of Metal Oxides
(
Oxford University Press
,
New York
,
2000
).
2.
V. M.
Fridkin
,
Ferroelectric Semiconductors
(
Consultants Bureau
,
New York
,
1980
).
3.
K.
Suzuki
and
K.
Kijima
, “
Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition
,”
Jpn. J. Appl. Phys.
44
,
2081
(
2005
).
4.
X.
Lin
,
J.
Xing
,
W.
Wang
,
Z.
Shan
,
F.
Xu
, and
F.
Huang
, “
Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts
,”
J. Phys. Chem. C
111
,
18288
(
2007
).
5.
Y.-H.
Chen
and
Y.-D.
Chen
, “
Kinetic study of Cu(II) adsorption on nanosized BaTiO3 and SrTiO3 photocatalysts
,”
J. Hazard. Mater.
185
,
168
(
2011
).
6.
S.
Sharma
,
M.
Tomar
,
A.
Kumar
,
N. K.
Puri
, and
V.
Gupta
, “
Enhanced ferroelectric photovoltaic response of BiFeO3/BaTiO3 multilayered structure
,”
J. Appl. Phys.
118
,
074103
(
2015
).
7.
M. K.
Hudait
,
Y.
Zhu
,
N.
Jain
,
D.
Maurya
,
Y.
Zhou
,
R.
Varghese
, and
S.
Priya
, “
BaTiO3 integration with nanostructured epitaxial (100), (110), and (111) germanium for multifunctional devices
,”
ACS Appl. Mater. Interfaces
5
,
11446
(
2013
).
8.
P. W. M.
Blom
,
R. M.
Wolf
,
J. F. M.
Cillessen
, and
M. P. C. M.
Krijn
,
Phys. Rev. Lett.
73
,
2107
(
1994
).
9.
V.
Garcia
,
S.
Fusil
,
K.
Bouzehouane
,
S.
Enouz-Vedrenne
,
N. D.
Mathur
,
A.
Barthélémy
, and
M.
Bibes
, “
Giant tunnel electroresistance for non-destructive readout of ferroelectric states
,”
Nature
460
,
81
(
2009
).
10.
E. Y.
Tsymbal
and
A.
Gruverman
, “
Beyond the barrier
,”
Nat. Mater.
12
,
602
(
2013
).
11.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
, “
Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions
,”
Nat. Mater.
12
,
617
(
2013
).
12.
N.
Oshime
,
J.
Kano
,
E.
Ikenaga
,
S.
Yasui
,
Y.
Hamasaki
,
S.
Yasuhara
,
S.
Hinokuma
,
N.
Ikeda
,
P.-E.
Janolin
,
J.-M.
Kiat
,
M.
Itoh
,
T.
Yokoya
,
T.
Fujii
,
A.
Yasui
, and
H.
Osawa
,
Sci. Rep.
10
,
10702
(
2020
).
13.
Z.
Xi
,
J.
Ruan
,
C.
Li
,
C.
Zheng
,
Z.
Wen
,
J.
Dai
,
A.
Li
, and
D.
Wu
, “
Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier
,”
Nat. Commun.
8
,
15217
(
2017
).
14.
N.
Shanthi
and
D. D.
Sarma
, “
Electronic structure of electron doped SrTiO3: SrTiO3−δ and Sr1−-xLaxTiO3
,”
Phys. Rev. B.
57
,
2153
(
1998
).
15.
T.
Higuchi
,
T.
Tsukamoto
,
N.
Sata
,
M.
Ishigame
,
Y.
Tezuka
, and
S.
Shin
, “
Electronic structure of p-type SrTiO3 by photoemission spectroscopy
,”
Phys. Rev. B
57
,
6978
(
1998
).
16.
T.
Higuchi
,
T.
Tsukamoto
,
K.
Kobayashi
,
S.
Yamaguchi
,
Y.
Ishiwata
,
N.
Sata
,
K.
Hiramoto
,
M.
Ishigame
, and
S.
Shin
, “
Direct evidence of p-type SrTiO3 by high-resolution x-ray absorption spectroscopy
,”
Phys. Rev. B
65
,
033201
(
2001
).
17.
N.
Oshime
,
J.
Kano
,
N.
Ikeda
,
T.
Teranishi
,
T.
Fujii
,
T.
Ueda
, and
T.
Ohkubo
, “
Quantitative study of band structure in BaTiO3 particles with vacant ionic sites
,”
J. Appl. Phys.
120
,
154101
(
2016
).
18.
M. D.
Sturge
, “
Optical absorption of gallium arsenide between 0.6 and 2.75 eV
,”
Phys. Rev.
127
,
768
(
1962
).
19.
F.
Zhang
,
T.
Karaki
, and
M.
Adachi
, “
Synthesis of nanosized (Pb,Sr)TiO3 perovskite powders by coprecipitation processing
,”
Powder Technol.
159
,
13
(
2005
).
20.
T.
Okamoto
,
J.
Kano
,
S.
Nakamura
,
A.
Fuwa
,
T.
Otoyama
,
Y.
Nakazaki
,
H.
Hashimoto
,
J.
Takada
,
M.
Ito
, and
N.
Ikeda
, “
Carrier mobility of iron oxide nanoparticles supported on ferroelectrics studied by Mössbauer spectroscopy
,”
Hyperfine Interact.
219
,
147
(
2013
).
21.
F.
Izumi
and
K.
Momma
, “
Three-dimensional visualization in powder diffraction
,”
Solid State Phenom.
130
,
15
(
2007
).
22.
R. G.
Rhodes
, “
Barium titanate twinning at low temperatures
,”
Acta Crystallogr.
4
,
105
(
1951
).
23.
S.
Aoyagi
,
Y.
Kuroiwa
,
A.
Sawada
,
I.
Yamashita
, and
T.
Atake
, “
Composite structure of BaTiO3 nanoparticle investigated by SR x-ray diffraction
,”
J. Phys. Soc. Jpn.
71
,
1218
(
2002
).
24.
T.
Hoshina
,
S.
Wada
,
Y.
Kuroiwa
, and
T.
Tsurumi
, “
Composite structure and size effect of barium titanate nanoparticles
,”
Appl. Phys. Lett.
93
,
192914
(
2008
).
25.
T.
Toyoda
,
W.
Yindeesuk
,
T.
Okuno
,
M.
Akimoto
,
K.
Kamiyama
,
S.
Hayase
, and
Q.
Shen
, “
Electronic structures of two types of TiO2 electrodes: Inverse opal and nanoparticulate cases
,”
RSC Adv.
5
,
49623
(
2015
).
26.
M.
Honda
,
K.
Kanai
,
K.
Komatsu
,
Y.
Ouchi
,
H.
Ishii
, and
K.
Seki
, “
Atmospheric effect of air, N2, O2, and water vapor on the ionization energy of titanyl phthalocyanine thin film studied by photoemission yield spectroscopy
,”
J. Appl. Phys.
102
,
103704
(
2007
).
27.
E. O.
Kane
, “
Theory of photoelectric emission from semiconductors
,”
Phys. Rev.
127
,
131
(
1962
).
28.
G. W.
Gobeli
and
F. G.
Allen
, “
Direct and indirect excitation processes in photoelectric emission from silicon
,”
Phys. Rev.
127
,
141
(
1962
).
29.
S.
Tadano
,
Y.
Nakayama
,
H.
Kinjo
,
H.
Ishii
, and
P.
Krüger
, “
Obtaining the highest occupied molecular orbital peak of organic matter from photoelectron yield spectra
,”
Phys. Rev. Appl.
11
,
054081
(
2019
).
30.
M.
Kochi
,
Y.
Harada
,
T.
Hirooka
, and
H.
Inokuchi
, “
Photoemission from organic crystal in vacuum ultraviolet region. IV
,”
Bull. Chem. Soc. Jpn.
43
,
2690
(
1970
).
31.
J.
Szuber
, “
New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission
,”
Vacuum
57
,
209
(
2000
).
32.
L. T.
Hudson
,
R. L.
Kurtz
,
S. W.
Robey
,
D.
Temple
, and
R. L.
Stockbauer
, “
Photoelectron spectroscopic study of the valence and core-level electronic structure of BaTiO3
,”
Phys. Rev. B
47
,
1174
(
1993
).
33.
D. C.
Cronemeyer
, “
Infrared absorption of reduced rutile TiO2 single crystals
,”
Phys. Rev.
113
,
1222
(
1959
).
34.
W.
Traiwattanapong
,
A.
Janotti
,
N.
Umezawa
,
S.
Limpijumnong
,
J.
T-Thienprasert
, and
P.
Reunchan
, “
Self-trapped holes in BaTiO3
,”
J. Appl. Phys.
124
,
085703
(
2018
).
35.
M.
Grundmann
,
Physics of Semiconductor: An Introduction Including Devices and Nanophysics
(
Springer Verlag
,
Berlin
,
2006
).
You do not currently have access to this content.