Magnetism breaks the time-reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to the quantum anomalous Hall effect. The most common approach of inducing a ferromagnetic state is by doping magnetic 3d elements into the bulk of 3D topological insulators. In Cr0.15(Bi0.1Sb0.9)1.85Te3, the material where the quantum anomalous Hall effect was initially discovered at temperatures much lower than the ferromagnetic transition, TC, the scanning tunneling microscopy studies have reported a large Dirac gap of 20100 meV. The discrepancy between the low temperature of quantum anomalous Hall effect (TC) and large spectroscopic Dirac gaps (TC) found in magnetic topological insulators remains puzzling. Here, we used angle-resolved photoemission spectroscopy to study the surface electronic structure of the pristine and potassium doped surface of Cr0.15(Bi0.1Sb0.9)1.85Te3. Upon potassium deposition, the p-type surface state of the pristine sample was turned into an n-type, allowing the spectroscopic observation of Dirac point. We find a gapless surface state, with no evidence of a large Dirac gap reported in tunneling studies.

1.
L.
Fu
and
C.
Kane
, “
Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
,”
Phys. Rev. Lett.
100
,
096407
(
2008
).
2.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
(
2011
).
3.
R.
Yu
,
W.
Zhang
,
H.-J.
Zhang
,
S.-C.
Zhang
,
X.
Dai
, and
Z.
Fang
, “
Quantized anomalous Hall effect in magnetic topological insulators
,”
Science
329
,
61
4
(
2010
).
4.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
,
Z.-Q.
Ji
,
Y.
Feng
,
S.
Ji
,
X.
Chen
,
J.
Jia
,
X.
Dai
,
Z.
Fang
,
S.-C.
Zhang
,
K.
He
,
Y.
Wang
,
L.
Lu
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
70
(
2013
).
5.
K.
He
,
Y.
Wang
, and
Q.-K.
Xue
, “
Quantum anomalous Hall effect
,”
Natl. Sci. Rev.
1
,
38
48
(
2013
).
6.
X.
Gui
,
I.
Pletikosic
,
H.
Cao
,
H.-J.
Tien
,
X.
Xu
,
R.
Zhong
,
G.
Wang
,
T.-R.
Chang
,
S.
Jia
,
T.
Valla
,
W.
Xie
, and
R. J.
Cava
, “
A new magnetic topological quantum material candidate by design
,”
ACS Cent. Sci.
5
,
900
910
(
2019
).
7.
H.
Li
,
S.-Y.
Gao
,
S.-F.
Duan
,
Y.-F.
Xu
,
K.-J.
Zhu
,
S.-J.
Tian
,
J.-C.
Gao
,
W.-H.
Fan
,
Z.-C.
Rao
,
J.-R.
Huang
,
J.-J.
Li
,
D.-Y.
Yan
,
Z.-T.
Liu
,
W.-L.
Liu
,
Y.-B.
Huang
,
Y.-L.
Li
,
Y.
Liu
,
G.-B.
Zhang
,
P.
Zhang
,
T.
Kondo
,
S.
Shin
,
H.-C.
Lei
,
Y.-G.
Shi
,
W.-T.
Zhang
,
H.-M.
Weng
,
T.
Qian
, and
H.
Ding
, “
Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1
,”
Phys. Rev. X
9
,
041039
(
2019
).
8.
M. M.
Otrokov
,
I. I.
Klimovskikh
,
H.
Bentmann
,
D.
Estyunin
,
A.
Zeugner
,
Z. S.
Aliev
,
S.
Gaß
,
A. U. B.
Wolter
,
A. V.
Koroleva
,
A. M.
Shikin
,
M.
Blanco-Rey
,
M.
Hoffmann
,
I. P.
Rusinov
,
A. Y.
Vyazovskaya
,
S. V.
Eremeev
,
Y. M.
Koroteev
,
V. M.
Kuznetsov
,
F.
Freyse
,
J.
Sánchez-Barriga
,
I. R.
Amiraslanov
,
M. B.
Babanly
,
N. T.
Mamedov
,
N. A.
Abdullayev
,
V. N.
Zverev
,
A.
Alfonsov
,
V.
Kataev
,
B.
Büchner
,
E. F.
Schwier
,
S.
Kumar
,
A.
Kimura
,
L.
Petaccia
,
G.
Di Santo
,
R. C.
Vidal
,
S.
Schatz
,
K.
Kißner
,
M.
Ünzelmann
,
C. H.
Min
,
S.
Moser
,
T. R. F.
Peixoto
,
F.
Reinert
,
A.
Ernst
,
P. M.
Echenique
,
A.
Isaeva
, and
E. V.
Chulkov
, “
Prediction and observation of an antiferromagnetic topological insulator
,”
Nature
576
,
416
422
(
2019
).
9.
A.
Zeugner
,
F.
Nietschke
,
A. U. B.
Wolter
,
S.
Gaß
,
R. C.
Vidal
,
T. R. F.
Peixoto
,
D.
Pohl
,
C.
Damm
,
A.
Lubk
,
R.
Hentrich
,
S. K.
Moser
,
C.
Fornari
,
C. H.
Min
,
S.
Schatz
,
K.
Kißner
,
M.
Ünzelmann
,
M.
Kaiser
,
F.
Scaravaggi
,
B.
Rellinghaus
,
K.
Nielsch
,
C.
Hess
,
B.
Büchner
,
F.
Reinert
,
H.
Bentmann
,
O.
Oeckler
,
T.
Doert
,
M.
Ruck
, and
A.
Isaeva
, “
Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4
,”
Chem. Mater.
31
,
2795
2806
(
2019
).
10.
Y.
Chen
,
L.
Xu
,
J.
Li
,
Y.
Li
,
H.
Wang
,
C.
Zhang
,
H.
Li
,
Y.
Wu
,
A.
Liang
,
C.
Chen
,
S.
Jung
,
C.
Cacho
,
Y.
Mao
,
S.
Liu
,
M.
Wang
,
Y.
Guo
,
Y.
Xu
,
Z.
Liu
,
L.
Yang
, and
Y.
Chen
, “
Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4
,”
Phys. Rev. X
9
,
041040
(
2019
).
11.
B.
Chen
,
F.
Fei
,
D.
Zhang
,
B.
Zhang
,
W.
Liu
,
S.
Zhang
,
P.
Wang
,
B.
Wei
,
Y.
Zhang
,
Z.
Zuo
,
J.
Guo
,
Q.
Liu
,
Z.
Wang
,
X.
Wu
,
J.
Zong
,
X.
Xie
,
W.
Chen
,
Z.
Sun
,
S.
Wang
,
Y.
Zhang
,
M.
Zhang
,
X.
Wang
,
F.
Song
,
H.
Zhang
,
D.
Shen
, and
B.
Wang
, “
Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes
,”
Nat. Commun.
10
,
4469
(
2019
).
12.
C.
Liu
,
Y.
Wang
,
H.
Li
,
Y.
Wu
,
Y.
Li
,
J.
Li
,
K.
He
,
Y.
Xu
,
J.
Zhang
, and
Y.
Wang
, “
Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator
,”
Nat. Mater.
19
,
522
527
(
2020
).
13.
Y.
Deng
,
Y.
Yu
,
M. Z.
Shi
,
Z.
Guo
,
Z.
Xu
,
J.
Wang
,
X. H.
Chen
, and
Y.
Zhang
, “
Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
,”
Science
367
,
895
900
(
2020
).
14.
E. D. L.
Rienks
,
S.
Wimmer
,
J.
Sánchez-Barriga
,
O.
Caha
,
P. S.
Mandal
,
J.
Růžička
,
A.
Ney
,
H.
Steiner
,
V. V.
Volobuev
,
H.
Groiss
,
M.
Albu
,
G.
Kothleitner
,
J.
Michalička
,
S. A.
Khan
,
J.
Minár
,
H.
Ebert
,
G.
Bauer
,
F.
Freyse
,
A.
Varykhalov
,
O.
Rader
, and
G.
Springholz
, “
Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
,”
Nature
576
,
423
428
(
2019
).
15.
A. M.
Shikin
,
D. A.
Estyunin
,
I. I.
Klimovskikh
,
S. O.
Filnov
,
E. F.
Schwier
,
S.
Kumar
,
K.
Miyamoto
,
T.
Okuda
,
A.
Kimura
,
K.
Kuroda
,
K.
Yaji
,
S.
Shin
,
Y.
Takeda
,
Y.
Saitoh
,
Z. S.
Aliev
,
N. T.
Mamedov
,
I. R.
Amiraslanov
,
M. B.
Babanly
,
M. M.
Otrokov
,
S. V.
Eremeev
, and
E. V.
Chulkov
, “
Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4
,”
Sci. Rep.
10
,
13226
(
2020
).
16.
Y.-J.
Hao
,
P.
Liu
,
Y.
Feng
,
X.-M.
Ma
,
E. F.
Schwier
,
M.
Arita
,
S.
Kumar
,
C.
Hu
,
R.
Lu
,
M.
Zeng
,
Y.
Wang
,
Z.
Hao
,
H.-Y.
Sun
,
K.
Zhang
,
J.
Mei
,
N.
Ni
,
L.
Wu
,
K.
Shimada
,
C.
Chen
,
Q.
Liu
, and
C.
Liu
, “
Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4
,”
Phys. Rev. X
9
,
041038
(
2019
).
17.
P.
Swatek
,
Y.
Wu
,
L.-L.
Wang
,
K.
Lee
,
B.
Schrunk
,
J.
Yan
, and
A.
Kaminski
, “
Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4
,”
Phys. Rev. B
101
,
161109
(
2020
).
18.
D.
Nevola
,
H. X.
Li
,
J.-Q.
Yan
,
R. G.
Moore
,
H.-N.
Lee
,
H.
Miao
, and
P. D.
Johnson
, “
Coexistence of surface ferromagnetism and a gapless topological state in MnBi2Te4
,”
Phys. Rev. Lett.
125
,
117205
(
2020
).
19.
L. A.
Wray
,
S.-Y.
Xu
,
Y.
Xia
,
D.
Hsieh
,
A. V.
Fedorov
,
Y. S.
Hor
,
R. J.
Cava
,
A.
Bansil
,
H.
Lin
, and
M. Z.
Hasan
, “
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
,”
Nat. Phys.
7
,
32
37
(
2010
).
20.
Y. L.
Chen
,
J.-H.
Chu
,
J. G.
Analytis
,
Z. K.
Liu
,
K.
Igarashi
,
H.-H.
Kuo
,
X. L.
Qi
,
S. K.
Mo
,
R. G.
Moore
,
D. H.
Lu
,
M.
Hashimoto
,
T.
Sasagawa
,
S. C.
Zhang
,
I. R.
Fisher
,
Z.
Hussain
, and
Z. X.
Shen
, “
Massive Dirac fermion on the surface of a magnetically doped topological insulator
,”
Science
329
,
659
62
(
2010
).
21.
S.-Y.
Xu
,
M.
Neupane
,
C.
Liu
,
D.
Zhang
,
A.
Richardella
,
L.
Andrew Wray
,
N.
Alidoust
,
M.
Leandersson
,
T.
Balasubramanian
,
J.
Sánchez-Barriga
,
O.
Rader
,
G.
Landolt
,
B.
Slomski
,
J.
Hugo Dil
,
J.
Osterwalder
,
T.-R.
Chang
,
H.-T.
Jeng
,
H.
Lin
,
A.
Bansil
,
N.
Samarth
, and
M.
Zahid Hasan
, “
Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator
,”
Nat. Phys.
8
,
616
622
(
2012
).
22.
M.
Bianchi
,
R.
Hatch
,
J.
Mi
,
B.
Iversen
, and
P.
Hofmann
, “
Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi2Se3
,”
Phys. Rev. Lett.
107
,
086802
(
2011
).
23.
T.
Valla
,
Z.-H.
Pan
,
D.
Gardner
,
Y.
Lee
, and
S.
Chu
, “
Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator
,”
Phys. Rev. Lett.
108
,
117601
(
2012
).
24.
J.
Sánchez-Barriga
,
A.
Varykhalov
,
G.
Springholz
,
H.
Steiner
,
R.
Kirchschlager
,
G.
Bauer
,
O.
Caha
,
E.
Schierle
,
E.
Weschke
,
A. A.
Ünal
,
S.
Valencia
,
M.
Dunst
,
J.
Braun
,
H.
Ebert
,
J.
Minár
,
E.
Golias
,
L. V.
Yashina
,
A.
Ney
,
V.
Holý
, and
O.
Rader
, “
Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1xMnx)2Se3
,”
Nat. Commun.
7
,
10559
(
2016
).
25.
I.
Lee
,
C. K.
Kim
,
J.
Lee
,
S. J. L.
Billinge
,
R.
Zhong
,
J. A.
Schneeloch
,
T.
Liu
,
T.
Valla
,
J. M.
Tranquada
,
G.
Gu
, and
J. C. S.
Davis
, “
Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2xTe3
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
1316
1321
(
2015
).
26.
M. F.
Crommie
,
C. P.
Lutz
, and
D. M.
Eigler
, “
Imaging standing waves in a two-dimensional electron gas
,”
Nature
363
,
524
527
(
1993
).
27.
T.
Hanaguri
,
K.
Igarashi
,
M.
Kawamura
,
H.
Takagi
, and
T.
Sasagawa
, “
Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3
,”
Phys. Rev. B
82
,
81305
(
2010
).
28.
A.
Gyenis
,
I. K.
Drozdov
,
S.
Nadj-Perge
,
O. B.
Jeong
,
J.
Seo
,
I.
Pletikosić
,
T.
Valla
,
G. D.
Gu
, and
A.
Yazdani
, “
Quasiparticle interference on the surface of the topological crystalline insulator Pb1xSnxSe
,”
Phys. Rev. B
88
,
125414
(
2013
).
29.
I.
Zeljkovic
,
Y.
Okada
,
M.
Serbyn
,
R.
Sankar
,
D.
Walkup
,
W.
Zhou
,
J.
Liu
,
G.
Chang
,
Y. J.
Wang
,
M. Z.
Hasan
,
F.
Chou
,
H.
Lin
,
A.
Bansil
,
L.
Fu
, and
V.
Madhavan
, “
Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators
,”
Nat. Mater.
14
,
318
324
(
2015
).
You do not currently have access to this content.