The presence of a point defect typically breaks the stoichiometry in a semiconductor. For example, a vacancy on an A-site in an AB compound makes the crystal B-rich. As the stoichiometry changes, so do the chemical potentials. While the prevalent first-principles methods have provided significant insight into characters of point defects in a transparent manner, the crucial connection between crystal stoichiometry and chemical potentials is usually not made. However, ad hoc choices for chemical potentials can lead to nonphysical negative formation energies in some Fermi level ranges, along with questions about charge balance. Herein, we formulate a canonical framework describing how the chemical potential of each element is directly linked to the composition of the crystal under (off-)stoichiometric conditions instead of the ad hoc assumption that the chemical potential is the elemental limit under a certain growth condition. Consequently, the chemical potential changes with the Fermi level within the bandgap and the formation energies are positive. Using such an approach, we present ab initio results for native point defects in BAs, a semiconductor with ultrahigh room-temperature thermal conductivity. We find that antisites are the constitutional defects in off-stoichiometric material, while B As antisites and B vacancies dominate in the stoichiometric material. We further discuss the thermodynamic equilibrium and charge neutrality point in BAs in light of our stoichiometry-determined chemical potentials. As discussed, our work offers a more applicable and accessible approach to tackle defect formation energies in semiconductors, especially the ones with wide gap where negative formation energies are commonly seen.

1.
J. M.
Johnson
,
S.
Im
,
W.
Windl
, and
J.
Hwang
, “
Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy
,”
Ultramicroscopy
172
,
17
29
(
2017
).
2.
N. G.
Stoddard
,
G.
Duscher
,
W.
Windl
, and
G. A.
Rozgonyi
, “
Simulation and electron energy-loss spectroscopy of electron beam induced point defect agglomerations in silicon
,”
MRS Proc.
810
,
C3.9
(
2004
).
3.
T. J.
Asel
,
E.
Yanchenko
,
X.
Yang
,
S.
Jiang
,
K.
Krymowski
,
Y.
Wang
,
A.
Trout
,
D. W.
McComb
,
W.
Windl
,
J. E.
Goldberger
, and
L. J.
Brillson
, “
Identification of Ge vacancies as electronic defects in methyl- and hydrogen-terminated germanane
,”
Appl. Phys. Lett.
113
,
061110
(
2018
).
4.
M.
Scheffler
and
J.
Dabrowski
, “
Parameter-free calculations of total energies, interatomic forces and vibrational entropies of defects in semiconductors
,”
Philos. Mag. A
58
,
107
121
(
1988
).
5.
D. B.
Laks
,
C. G.
Van de Walle
,
G. F.
Neumark
, and
S. T.
Pantelides
, “
Role of native defects in wide-band-gap semiconductors
,”
Phys. Rev. Lett.
66
,
648
(
1991
).
6.
J.
Neugebauer
and
C. G.
Van de Walle
, “
Atomic geometry and electronic structure of native defects in GaN
,”
Phys. Rev. B
50
,
8067
8070
(
1994
).
7.
W.
Windl
,
M. M.
Bunea
,
R.
Stumpf
,
S. T.
Dunham
, and
M. P.
Masquelier
, “
First-principles study of boron diffusion in silicon
,”
Phys. Rev. Lett.
83
,
4345
(
1999
).
8.
S.
Estreicher
, “
Structure and dynamics of point defects in crystalline silicon
,”
Phys. Status Solidi B
217
,
513
532
(
2000
).
9.
W.
Windl
, “
Diffusion in silicon and the predictive power of ab-initio calculations
,”
Physica Status Solidi B
241
,
2313
2318
(
2004
).
10.
W.
Windl
, “Process simulation for silicon nanoelectronic devices,” in Handbook of Theoretical and Computational Nanotechnology, edited by W. Schommers and M. Rieth (American Scientific Publishers, Stevenson Ranch, CA, 2006), pp. 137–209.
11.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G. V.
de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
,
253
305
(
2014
).
12.
W.
Windl
and
A. A.
Demkov
, “
First-principles study of nitrogen impurities in SiC polytypes
,”
MRS Proc.
510
,
181
(
1998
).
13.
R.
Ramprasad
,
H.
Zhu
,
P.
Rinke
, and
M.
Scheffler
, “
New perspective on formation energies and energy levels of point defects in nonmetals
,”
Phys. Rev. Lett.
108
,
066404
(
2012
).
14.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
,
4014
4022
(
1995
).
15.
W. D.
Callister
, “Chap. 5.3 Point defects in ceramics,” in Materials Science and Engineering (John Wiley and Sons, New York, NY, 2007).
16.
M.
Choi
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Native point defects and dangling bonds in α-Al 2O 3
,”
J. Appl. Phys.
113
,
044501
(
2013
).
17.
S. B.
Zhang
and
J. E.
Northrup
, “
Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion
,”
Phys. Rev. Lett.
67
,
2339
2342
(
1991
).
18.
L.
Lindsay
,
D.
Broido
, and
T. L.
Reinecke
, “
First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?
,”
Phys. Rev. Lett.
111
,
025901
(
2013
).
19.
T.
Feng
,
L.
Lindsay
, and
X.
Ruan
, “
Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids
,”
Phys. Rev. B
96
,
161201
(
2017
).
20.
S.
Li
,
Q.
Zheng
,
Y.
Lv
,
X.
Liu
,
X.
Wang
,
P. Y.
Huang
,
D. G.
Cahill
, and
B.
Lv
, “
High thermal conductivity in cubic boron arsenide crystals
,”
Science
361
,
579
581
(
2018
).
21.
F.
Tian
,
B.
Song
,
X.
Chen
,
N. K.
Ravichandran
,
Y.
Lv
,
K.
Chen
,
S.
Sullivan
,
J.
Kim
,
Y.
Zhou
,
T.-H.
Liu
et al., “
Unusual high thermal conductivity in boron arsenide bulk crystals
,”
Science
361
,
582
585
(
2018
).
22.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
, “
Experimental observation of high thermal conductivity in boron arsenide
,”
Science
361
,
575
578
(
2018
).
23.
F.
Tian
,
B.
Song
,
B.
Lv
,
J.
Sun
,
S.
Huyan
,
Q.
Wu
,
J.
Mao
,
Y.
Ni
,
Z.
Ding
,
S.
Huberman
et al., “
Seeded growth of boron arsenide single crystals with high thermal conductivity
,”
Appl. Phys. Lett.
112
,
031903
(
2018
).
24.
J.
Kim
,
D. A.
Evans
,
D. P.
Sellan
,
O. M.
Williams
,
E.
Ou
,
A. H.
Cowley
, and
L.
Shi
, “
Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure
,”
Appl. Phys. Lett.
108
,
201905
(
2016
).
25.
B.
Lv
,
Y.
Lan
,
X.
Wang
,
Q.
Zhang
,
Y.
Hu
,
A. J.
Jacobson
,
D.
Broido
,
G.
Chen
,
Z.
Ren
, and
C.-W.
Chu
, “
Experimental study of the proposed super-thermal-conductor: BAs
,”
Appl. Phys. Lett.
106
,
074105
(
2015
).
26.
N. H.
Protik
,
J.
Carrete
,
N. A.
Katcho
,
N.
Mingo
, and
D.
Broido
, “
Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide
,”
Phys. Rev. B
94
,
045207
(
2016
).
27.
Q.
Zheng
,
C. A.
Polanco
,
M.-H.
Du
,
L. R.
Lindsay
,
M.
Chi
,
J.
Yan
, and
B. C.
Sales
, “
Antisite pairs suppress the thermal conductivity of BAs
,”
Phys. Rev. Lett.
121
,
105901
(
2018
).
28.
R.
Mishra
,
O. D.
Restrepo
,
A.
Kumar
, and
W.
Windl
, “
Native point defects in binary InP semiconductors
,”
J. Mater. Sci.
47
,
7482
7497
(
2012
).
29.
M. V. B.
Pinheiro
,
E.
Rauls
,
U.
Gerstmann
,
S.
Greulich-Weber
,
H.
Overhof
, and
J.-M.
Spaeth
, “
Silicon vacancy annealing and D i luminescence in 6 h Si C
,”
Phys. Rev. B
70
,
245204
(
2004
).
30.
J.
Mayer
,
C.
Elsässer
, and
M.
Fähnle
, “
Concentrations of atomic defects in B2 Fe xAl 1 x. An ab-initio study
,”
Phys. Status Solidi B
191
,
283
298
(
1995
).
31.
S. M.
Foiles
and
M. S.
Daw
, “
Application of the embedded atom method to Ni 3Al
,”
J. Mater. Res.
2
,
5
15
(
1987
).
32.
V.
Schott
and
M.
Fähnle
, “
Concentration of atomic defects in ordered compounds: Canonical and grandcanonical formalism
,”
Phys. Status Solidi B
204
,
617
624
(
1997
).
33.
M.
Hagen
and
M. W.
Finnis
, “
Point defects and chemical potentials in ordered alloys
,”
Philos. Mag. A
77
,
447
464
(
1998
).
34.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
35.
W.
Luo
and
W.
Windl
, “
First principles study of the structure and stability of carbynes
,”
Carbon
47
,
367
383
(
2009
).
36.
S. B.
Zhang
and
J. E.
Northrup
, “
Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion
,”
Phys. Rev. Lett.
67
,
2339
(
1991
).
37.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
38.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
39.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
40.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
41.
D.
Touat
,
M.
Ferhat
, and
A.
Zaoui
, “
Dynamical behaviour in the boron III–V group: A first-principles study
,”
J. Phys. Condens. Matter
18
,
3647
(
2006
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
43.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
44.
M. S.
Daw
,
W.
Windl
,
N. N.
Carlson
,
M.
Laudon
, and
M. P.
Masquelier
, “
Effect of stress on dopant and defect diffusion in Si: A general treatment
,”
Phys. Rev. B
64
,
045205
(
2001
).
45.
Y. P.
Varshni
, “
Temperature dependence of the energy gap in semiconductors
,”
Physica
34
,
149
154
(
1967
).
46.
T.
Chu
and
A.
Hyslop
, “
Preparation and properties of boron arsenide films
,”
J. Electrochem. Soc.
121
,
412
415
(
1974
).
47.
B.
Van Zeghbroeck
,
Principles of Semiconductor Devices
(
Colarado University
,
2004
), Vol. 34.
48.
W. E.
Spicer
,
P. W.
Chye
,
P. R.
Skeath
,
C. Y.
Su
, and
I.
Lindau
, “
New and unified model for Schottky barrier and III–V insulator interface states formation
,”
J. Vac. Sci. Technol.
16
,
1422
1433
(
1979
).
49.
V.
Brudnyi
,
S.
Grinyaev
, and
V.
Stepanov
, “
Local neutrality conception: Fermi level pinning in defective semiconductors
,”
Physica B
212
,
429
435
(
1995
).
50.
S.
Chae
,
K.
Mengle
,
J. T.
Heron
, and
E.
Kioupakis
, “
Point defects and dopants of boron arsenide from first-principles calculations: Donor compensation and doping asymmetry
,”
Appl. Phys. Lett.
113
,
212101
(
2018
).
51.
J. L.
Lyons
,
J. B.
Varley
,
E. R.
Glaser
,
J. A.
Freitas
, Jr.
,
J. C.
Culbertson
,
F.
Tian
,
G. A.
Gamage
,
H.
Sun
,
H.
Ziyaee
, and
Z.
Ren
, “
Impurity-derived p-type conductivity in cubic boron arsenide
,”
Appl. Phys. Lett.
113
,
251902
(
2018
).
52.
X.
Meng
,
A.
Singh
,
R.
Juneja
,
Y.
Zhang
,
F.
Tian
,
Z.
Ren
,
A. K.
Singh
,
L.
Shi
,
J.-F.
Lin
, and
Y.
Wang
, “
Pressure-dependent behavior of defect-modulated band structure in boron arsenide
,”
Adv. Mater.
32
,
2001942
(
2020
).
53.
N.
Stoddard
,
P.
Pichler
,
G.
Duscher
, and
W.
Windl
, “
Ab initio identification of the nitrogen diffusion mechanism in silicon
,”
Phys. Rev. Lett.
95
,
025901
(
2005
).
54.
B.
Grabowski
,
L.
Ismer
,
T.
Hickel
, and
J.
Neugebauer
, “
Ab initio up to the melting point: Anharmonicity and vacancies in aluminum
,”
Phys. Rev. B
79
,
134106
(
2009
).
55.
B.
Grabowski
,
T.
Hickel
, and
J.
Neugebauer
, “
Formation energies of point defects at finite temperatures
,”
Phys. Status Solidi B
248
,
1295
1308
(
2010
).
56.
A.
Glensk
,
B.
Grabowski
,
T.
Hickel
, and
J.
Neugebauer
, “
Breakdown of the arrhenius law in describing vacancy formation energies: The importance of local anharmonicity revealed by ab initio thermodynamics
,”
Phys. Rev. X
4
,
011018
(
2014
).

Supplementary Material

You do not currently have access to this content.