Wire X-pinches (WXPs) have been studied comprehensively as fast (1 ns pulse width), small (1μm) x-ray sources, created by twisting two or more fine wires into an “X” to produce a localized region of extreme magnetic pressure at the cross-point. Recently, two alternatives to the traditional WXP have arisen: the hybrid X-pinch (HXP), composed of two conical electrodes bridged by a thin wire or capillary, and the laser-cut foil X-pinch (LCXP), cut from a thin foil using a laser. We present a comparison of copper wire, hybrid, and laser-cut foil X-pinches on a single experimental platform: UC San Diego’s 200 kA, 150 ns rise time GenASIS driver. All configurations produced 1–2 ns pulse width, 5μm soft x-ray (Cu L-shell, 1 keV) sources (resolutions diagnostically limited) with comparable fluxes. WXP results varied with linear mass and wire count, but consistently showed separate pinch and electron-beam-driven sources. LCXPs produced the brightest (1 MW), smallest (5μm) Cu K-shell sources, and spectroscopic data showed both H-like Cu Kα lines indicative of source temperatures 2 keV, and cold Kα (8050 eV) characteristic of electron beam generated sources, which were not separately resolved on other diagnostics (within 1–2 ns and 200μm). HXPs produced minimal K-shell emission and reliably single, bright, and small L-shell sources after modifications to shape the early current pulse through them. Benefits and drawbacks for each configuration are discussed to provide potential X-pinch users with the information required to choose the configuration best suited to their needs.

1.
S. M.
Zakharov
,
G. V.
Ivanenkov
,
A. A.
Kolomenskii
,
S. A.
Pikuz
,
A. I.
Samokhin
, and
I.
Ulshmid
, “
Wire X-pinch in a high-current diode
,”
Sov. Tec. Phys. Lett.
8
,
456
457
(
1982
).
2.
S. M.
Zakharov
,
G. V.
Ivanenkov
,
A. A.
Kolomenskii
,
S. A.
Pikuz
, and
A. I.
Samokhin
, “
Plasma of an exploding multiwire load in the diode of a high-current accelerator
,”
Sov. Tech. Phys. Lett.
13
,
115
121
(
1987
).
3.
D. H.
Kalantar
and
D. A.
Hammer
, “
The x-pinch as a point source of x-rays for backlighting
,”
Rev. Sci. Instrum.
66
,
779
781
(
1995
).
4.
D. A.
Hammer
,
D. H.
Kalantar
,
K. C.
Mittal
, and
N.
Qi
, “
X-pinch soft x-ray source for microlithography
,”
Appl. Phys. Lett.
57
,
2083
2085
(
1990
).
5.
D. H.
Kalantar
,
D. A.
Hammer
,
K. C.
Mittal
,
N.
Qi
,
J. R.
Maldonado
, and
Y.
Vladimirsky
, “
Intense pulsed plasma x-ray source for lithography
,”
J. Vac. Sci. Technol. B
9
,
3245
3249
(
1991
).
6.
C. L.
Hoyt
,
S. A.
Pikuz
,
T. A.
Shelkovenko
, and
D. A.
Hammer
, “Preliminary investigations into utilizing standard/hybrid x-pinch line radiation as a probe for x-ray Thomson scattering experiments,” in 2012 Abstracts IEEE International Conference on Plasma Science (IEEE, 2012), p. 3P-136.
7.
G. V.
Ivanenkov
,
S. A.
Pikuz
,
T. A.
Shelkovenko
,
J.
Greenly
,
D. B.
Sinars
, and
D. A.
Hammer
, “
Formation, cascade development, and rupture of the x-pinch neck
,”
J. Exp. Theor. Phys.
91
,
469
478
(
2000
).
8.
S. A.
Pikuz
,
D. B.
Sinars
,
T. A.
Shelkovenko
,
K. M.
Chandler
,
D. A.
Hammer
,
G. V.
Ivanenkov
,
W.
Stepniewski
, and
I. Y.
Skobelev
, “
High energy density Z-pinch plasma conditions with picosecond time resolution
,”
Phys. Rev. Lett.
89
,
035003
(
2002
).
9.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
D. A.
Hammer
,
Y. S.
Dimant
, and
A. R.
Mingaleev
, “
Evolution of the structure of the dense plasma near the cross point in exploding wire X pinches
,”
Phys. Plasmas
6
,
2840
2846
(
1999
).
10.
T. A.
Shelkovenko
,
D. B.
Sinars
,
S. A.
Pikuz
, and
D. A.
Hammer
, “
Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics
,”
Phys. Plasmas
8
,
1305
1318
(
2001
).
11.
J. P.
Chittenden
,
A.
Ciardi
,
C. A.
Jennings
,
S. V.
Lebedev
,
D. A.
Hammer
,
S. A.
Pikuz
, and
T. A.
Shelkovenko
, “
Structural evolution and formation of high-pressure plasmas in X pinches
,”
Phys. Rev. Lett.
98
,
025003
(
2007
).
12.
S. A.
Pikuz
,
V. M.
Romanova
,
T. A.
Shelkovenko
,
D. A.
Hammer
, and
A. Y.
Faenov
, “
Spectroscopic investigations of the short wavelength x-ray spectra from X-pinch plasmas
,”
Phys. Scripta
51
,
517
521
(
1995
).
13.
S.
Pikuz
,
T.
Shelkovenko
,
V.
Ramanova
,
J.
Abdallah
,
G.
Csanak
,
R. E. H.
Clark
,
A. Y.
Faenov
,
I. Y.
Skobelev
, and
D. A.
Hammer
, “
Effect of an electron beam generated in an X-pinch plasma on the structure of the K spectra of multiply charged ions
,”
J. Exp. Theor. Phys.
85
,
484
491
(
1997
).
14.
J.
Abdallah
,
A. Y.
Faenov
,
D.
Hammer
,
S. A.
Pikuz
,
G.
Csanak
, and
R. E. H.
Clark
, “
Electron beam effects on the spectroscopy of satellite lines in aluminum X-pinch experiments
,”
Phys. Scr.
53
,
705
711
(
1996
).
15.
V. L.
Kantsyrev
,
A. S.
Shlyaptseva
,
B. S.
Bauer
,
D. A.
Fedin
,
R.
Presura
,
S.
Fuelling
,
S.
Hansen
,
S.
Batie
,
A.
Oxner
,
H.
Faretto
,
N.
Ouart
,
S.
Keely
,
H.
LeBeau
, and
D.
Chamberlain
, “X-ray temporal, spatial and spectral study of 0.9 MA X-pinch Ti, Fe, Mo, W and Pt radiation sources. Energetic electron beam and hard x-ray generation,” in PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251) (IEEE, 2001), Vol. 1, pp. 346–349.
16.
V. L.
Kantsyrev
,
D. A.
Fedin
,
A. S.
Shlyaptseva
,
S.
Hansen
,
D.
Chamberlain
, and
N.
Ouart
, “
Energetic electron beam generation and anisotropy of hard x-ray emission from 0.9 to 1.0 MA high-z X pinches
,”
Phys. Plasmas
10
,
2519
2526
(
2003
).
17.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
B. M.
Song
,
K. M.
Chandler
,
M. D.
Mitchell
,
D. A.
Hammer
,
G. V.
Ivanenkov
,
A. R.
Mingaleev
, and
V. M.
Romanova
, “
Electron-beam-generated x-rays from X pinches
,”
Phys. Plasmas
12
,
033102
(
2005
).
18.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
J. D.
Douglass
,
R. D.
Mcbride
,
J. B.
Greenly
, and
D. A.
Hammer
, “
Multiwire X-pinches at 1-MA current on the cobra pulsed-power generator
,”
IEEE Trans. Plasma Sci.
34
,
2336
2341
(
2006
).
19.
C.
Christou
and
P.
Choi
, “Characterization of the radiation from a low-energy X-pinch source,”
Proc. SPIE
1552
, 278–287 (
1991
).
20.
C.
Christou
,
A. E.
Dangor
, and
D. A.
Hammer
, “
Characterization of wire X pinches driven by a microsecond-long capacitive discharge
,”
J. Appl. Phys.
87
,
8295
8303
(
2000
).
21.
R. K.
Appartaim
and
B. T.
Maakuu
, “
X-pinch x-ray sources driven by a 1 μs capacitor discharge
,”
Phys. Plasmas
15
,
072703
(
2008
).
22.
G. W.
Collins
,
M. P.
Valdivia
,
T.
Zick
,
R. E.
Madden
,
M. G.
Haines
, and
F. N.
Beg
, “
Study of X-pinch dynamics using a low current (25 kA) and slower current (400 ns) pulse
,”
Phys. Plasmas
20
,
042704
(
2013
).
23.
F. N.
Beg
,
K.
Krushelnick
,
P.
Lichtsteiner
,
A.
Meakins
,
A.
Kennedy
,
N.
Kajumba
,
G.
Burt
, and
A. E.
Dangor
, “
Table-top X-pinch for x-ray radiography
,”
Appl. Phys. Lett.
82
,
4602
4604
(
2003
).
24.
F. N.
Beg
,
R. B.
Stephens
,
H.-W.
Xu
,
D.
Haas
,
S.
Eddinger
,
G.
Tynan
,
E.
Shipton
,
B.
DeBono
, and
K.
Wagshal
, “
Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules
,”
Appl. Phys. Lett.
89
,
101502
(
2006
).
25.
J. S.
Green
,
S. N.
Bland
,
M.
Collett
,
A. E.
Dangor
,
K.
Krushelnick
,
F. N.
Beg
, and
I.
Ross
, “
Effect of wire number on X-pinch discharges
,”
Appl. Phys. Lett.
88
,
261501
(
2006
).
26.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
I. N.
Tilikin
,
S. N.
Bland
,
D.
Lall
,
N.
Chaturvedi
, and
A.
Georgakis
, “
X-pinch x-ray emission on a portable low-current, fast rise-time generator
,”
J. Appl. Phys.
124
,
083303
(
2018
).
27.
S. C.
Bott
,
D. M.
Haas
,
Y.
Eshaq
,
U.
Ueda
,
R. E.
Madden
,
G. W.
Collins
, and
F. N.
Beg
, “
Ablation studies of low-number wire arrays at 200 kA using a linear transformer driver
,”
IEEE Trans. Plasma Sci.
38
,
567
573
(
2010
).
28.
S. C.
Bott
,
D. M.
Haas
,
R. E.
Madden
,
U.
Ueda
,
Y.
Eshaq
,
G.
Collins
,
K.
Gunasekera
,
D.
Mariscal
,
J.
Peebles
,
F. N.
Beg
,
M.
Mazarakis
,
K.
Struve
, and
R.
Sharpe
, “
250 kA compact linear transformer driver for wire array Z-pinch loads
,”
Phys. Rev. Spec. Top. Accel. Beams
14
,
050401
(
2011
).
29.
G. V.
Ivanenkov
,
A. R.
Mingaleev
,
S. A.
Pikuz
,
V. M.
Romanova
, and
T. A.
Shelkovenko
, “
Experimental study of X-pinch dynamics
,”
Plasma Phys. Rep.
22
,
363
378
(
1996
).
30.
I. H.
Mitchell
,
R.
Aliaga-Rossel
,
R.
Saavedra
,
H.
Chuaqui
,
M.
Favre
, and
E. S.
Wyndham
, “
Investigation of the plasma jet formation in X-pinch plasmas using laser interferometry
,”
Phys. Plasmas
7
,
5140
5147
(
2000
).
31.
L. E.
Aranchuk
,
A. S.
Chuvatin
, and
J.
Larour
, “
Compact submicrosecond, high current generator for wire explosion experiments
,”
Rev. Sci. Instrum.
75
,
69
74
(
2004
).
32.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
S. A.
Mishin
,
A. R.
Mingaleev
,
I. N.
Tilikin
,
P. F.
Knapp
,
A. D.
Cahill
,
C. L.
Hoyt
, and
D. A.
Hammer
, “
Hybrid X-pinches
,”
Plasma Phys. Rep.
38
,
359
381
(
2012
).
33.
I. V.
Lavrinovich
,
A. P.
Artyomov
,
N. V.
Zharova
,
V. F.
Fedushchak
,
A. V.
Fedyunin
, and
A. A.
Erfort
, “
A compact nanosecond pulse generator
,”
Instrum. Exp. Tech.
56
,
55
58
(
2013
).
34.
R.
Liu
,
X.
Zou
,
X.
Wang
,
L.
He
, and
N.
Zeng
, “
X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University
,”
Laser Part. Beams
26
,
33
36
(
2008
).
35.
A. V.
Kharlov
,
B. M.
Kovalchuk
, and
V. B.
Zorin
, “
Compact high current generator for x-ray radiography
,”
Rev. Sci. Instrum.
77
,
123501
(
2006
).
36.
R. E.
Madden
,
S. C.
Bott
,
G.
Collins
, and
F. N.
Beg
, “
Investigation of carbon X-pinches as a source for point-projection radiography
,”
IEEE Trans. Plasma Sci.
37
,
433
437
(
2009
).
37.
J.
Wu
,
T.-P.
Sun
,
G.
Wu
,
L.-P.
Wang
,
J.-J.
Han
,
M.
Li
,
P.-T.
Cong
,
A.-C.
Qiu
, and
M.
Lv
, “
Aluminum and tungsten x-pinch experiments on 100 kA, 100 ns linear transformer driver stage
,”
Phys. Plasmas
18
,
052702
(
2011
).
38.
G. A.
AU Mesyats
,
T. A.
Shelkovenko
,
G. V.
Ivanenkov
,
A. V.
Agafonov
,
S. Y.
Savinov
,
S. A.
Pikuz
,
I. N.
Tilikin
,
S. I.
Tkachenko
,
S. A.
Chaikovskii
,
N. A.
Ratakhin
,
V. F.
Fedushchak
,
V. I.
Oreshkin
,
A. V.
Fedyunin
,
A. G.
Russkikh
,
N. A.
Labetskaya
,
A. P.
Artemov
,
D. A.
Hammer
, and
D. B.
Sinars
, “
X-pinch source of subnanosecond soft x-ray pulses based on small-sized low-inductance current generator
,”
J. Exp. Theor. Phys.
111
,
363
370
(
2010
).
39.
F.
Zucchini
,
S. N.
Bland
,
C.
Chauvin
,
P.
Combes
,
D.
Sol
,
A.
Loyen
,
B.
Roques
, and
J.
Grunenwald
, “
Characteristics of a molybdenum X-pinch x-ray source as a probe source for x-ray diffraction studies
,”
Rev. Sci. Instrum.
86
,
033507
(
2015
).
40.
R. V.
Shapovalov
,
R. B.
Spielman
, and
G. R.
Imel
, “
An oil-free compact x-pinch plasma radiation source: Design and radiation performance
,”
Rev. Sci. Instrum.
88
,
063504
(
2017
).
41.
S. V.
Lebedev
,
F. N.
Beg
,
S. N.
Bland
,
J. P.
Chittenden
,
A. E.
Dangor
,
M. G.
Haines
,
M.
Zakaullah
,
S. A.
Pikuz
,
T. A.
Shelkovenko
, and
D. A.
Hammer
, “
X-ray backlighting of wire array z-pinch implosions using x pinch
,”
Rev. Sci. Instrum.
72
,
671
673
(
2001
).
42.
V. V.
Alexandrov
,
I. N.
Frolov
,
M. V.
Fedulov
,
E. V.
Grabovsky
,
K. N.
Mitrofanov
,
S. L.
Nedoseev
,
G. M.
Oleinik
,
I. Y.
Porofeev
,
A. A.
Samokhin
,
P. V.
Sasorov
,
V. P.
Smirnov
,
G. S.
Volkov
,
M. M.
Zurin
, and
G. G.
Zukakischvili
, “
Prolonged plasma production at current-driven implosion of wire arrays on Angara-5-1 facility
,”
IEEE Trans. Plasma Sci.
30
,
559
566
(
2002
).
43.
J. D.
Douglass
,
J. B.
Greenly
,
D. A.
Hammer
,
R. D.
McBride
,
S. A.
Pikuz
, and
T. A.
Shelkovenko
, “
The imaging of Z-pinches using X-pinch backlighting
,”
AIP Conf. Proc.
808
,
129
132
(
2006
).
44.
J. D.
Douglass
and
D. A.
Hammer
, “
Cobra-star, a five frame point-projection x-ray imaging system for 1 MA scale wire-array Z pinches
,”
Rev. Sci. Instrum.
79
,
033503
(
2008
).
45.
J.
Wu
,
L.
Wang
,
A.
Qiu
,
J.
Han
,
M.
Li
,
T.
Lei
,
P.
Cong
,
M.
Qiu
,
H.
Yang
,
M.
Lv
et al., “
Experimental investigations of X-pinch backlighters on QiangGuang-1 generator
,”
Laser Part. Beams
29
,
155
160
(
2011
).
46.
S. A.
Pikuz
,
G. V.
Ivanenkov
,
T. A.
Shelkovenko
, and
D.
Hammer
, “
On the phase state of the core matter in a high-power discharge through a wire
,”
J. Exp. Theor. Phys. Lett.
69
,
377
382
(
1999
).
47.
N.
Loter
,
M.
Gersten
,
R.
Grandey
,
J.
Rauch
,
K.
Ware
,
M.
Coulter
,
J.
Davis
, and
K.
Whitney
, “
X-pinch wire load experiments on BLACKJACK 5
,”
J. Quant. Spectro. Radiat. Transfer
44
,
509
518
(
1990
), Special Issue Radiation and Spectroscopy of Pulse-Power-Driven Plasmas.
48.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
R. D.
McBride
,
P. F.
Knapp
,
H.
Wilhelm
,
D. A.
Hammer
, and
D. B.
Sinars
, “
Nested multilayered x pinches for generators with mega-ampere current level
,”
Phys. Plasmas
16
,
050702
(
2009
).
49.
J.
Li
,
J.-J.
Deng
,
W.-P.
Xie
,
X.-B.
Huang
,
L.-B.
Yang
,
S.-T.
Zhou
,
X.-L.
Zhu
,
S.-C.
Duan
,
S.-Q.
Zhang
, and
J.-K.
Dan
, “
Study of keV radiation properties of Mo and Ti X-pinch plasma sources using a pinhole transmission grating spectrometer
,”
Phys. Plasmas
17
,
073104
(
2010
).
50.
D. B.
Sinars
,
R. D.
McBride
,
S. A.
Pikuz
,
T. A.
Shelkovenko
,
D. F.
Wenger
,
M. E.
Cuneo
,
E. P.
Yu
,
J. P.
Chittenden
,
E. C.
Harding
,
S. B.
Hansen
,
B. P.
Peyton
,
D. J.
Ampleford
, and
C. A.
Jennings
, “
Investigation of high-temperature bright plasma x-ray sources produced in 5-Ma X-pinch experiments
,”
Phys. Rev. Lett.
109
,
155002
(
2012
).
51.
S. A.
Pikuz
,
T. A.
Shelkovenko
, and
D. A.
Hammer
, “
X-pinch. Part I
,”
Plasma Phys. Rep.
41
,
291
342
(
2015
).
52.
B. M.
Song
,
T. A.
Shelkovenko
,
S. A.
Pikuz
,
M. A.
Mitchell
,
K. M.
Chandler
, and
D. A.
Hammer
, “
X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens
,”
IEEE Trans. Nucl. Sci.
51
,
2514
2519
(
2004
).
53.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
C. L.
Hoyt
,
A. D.
Cahill
,
L.
Atoyan
,
D. A.
Hammer
,
I. N.
Tilikin
,
A. R.
Mingaleev
,
V. M.
Romanova
, and
A. V.
Agafonov
, “
A source of hard x-ray radiation based on hybrid X pinches
,”
Phys. Plasmas
23
,
103303
(
2016
).
54.
T.
Shelkovenko
,
S.
Pikuz
,
I.
Tilikin
,
M.
Mitchell
,
S.
Bland
, and
D.
Hammer
, “
Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA
,”
Matter Radiat. Extremes
3
,
267
277
(
2018
).
55.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
D. B.
Sinars
,
K. M.
Chandler
, and
D. A.
Hammer
, “
X pinch plasma development as a function of wire material and current pulse parameters
,”
IEEE Trans. Plasma Sci.
30
,
567
576
(
2002
).
56.
B. M.
Song
,
S. A.
Pikuz
,
T. A.
Shelkovenko
, and
D. A.
Hammer
, “
Determination of the size and structure of an X-pinch x-ray source from the diffraction pattern produced by microfabricated slits
,”
Appl. Opt.
44
,
2349
2358
(
2005
).
57.
G. W.
Collins IV
,
J. C.
Valenzuela
,
S. B.
Hansen
,
M. S.
Wei
,
C. T.
Reed
,
A. C.
Forsman
, and
F. N.
Beg
, “
Characterization of laser-cut copper foil X-pinches
,”
Phys. Plasmas
23
,
101212
(
2016
).
58.
L. E.
Aranchuk
,
J.
Larour
, and
A. S.
Chuvatin
, “
Experimental study of x-pinch in a submicrosecond regime
,”
IEEE Trans. Plasma Sci.
33
,
990
996
(
2005
).
59.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
A. D.
Cahill
,
P. F.
Knapp
,
D. A.
Hammer
,
D. B.
Sinars
,
I. N.
Tilikin
, and
S. N.
Mishin
, “
Hybrid X-pinch with conical electrodes
,”
Phys. Plasmas
17
,
112707–1
112707–5
(
2010
).
60.
T. A.
Shelkovenko
,
S. A.
Pikuz
,
C. L.
Hoyt
,
A. D.
Cahill
, and
D. A.
Hammer
, “
Study of new configurations of hybrid X pinches
,”
IEEE Trans. Plasma Sci.
42
,
748
752
(
2014
).
61.
T. A.
Shelkovenko
,
I. N.
Tilikin
,
G. V.
Ivanenkov
,
W.
Stepniewski
,
A. R.
Mingaleev
,
V. M.
Romanova
,
A. V.
Agafonov
,
A. D.
Cahill
,
C. L.
Hoyt
,
P. A.
Gourdain
,
D. A.
Hammer
, and
S. A.
Pikuz
, “
Dynamics of hybrid X-pinches
,”
Plasma Phys. Rep.
41
,
52
70
(
2015
).
62.
V. M.
Romanova
,
I. N.
Tilikin
,
T. A.
Shelkovenko
,
A. R.
Mingaleev
,
E. A.
Bolkhovitinov
,
A. A.
Rupasov
,
A. E.
Ter-Oganesyan
, and
S. A.
Pikuz
, “
The hybrid X-pinch as a source of XUV radiation
,”
IEEE Trans. Plasma Sci.
46
,
3837
3841
(
2018
).
63.
G. W.
Collins IV
,
M. P.
Valdivia
,
T. O.
Zick
,
J.
Kim
,
D. M.
Haas
,
A.
C.
,
R. B.
Stephens
, and
F. N.
Beg
, “
Investigation into the dynamics of laser-cut foil X-pinches and their potential use for high repetition rate operation
,”
Appl. Phys. Lett.
105
,
024101
(
2014
).
64.
I. N.
Tilikin
,
T. A.
Shelkovenko
,
S. A.
Pikuz
,
S. N.
Mishin
,
A. R.
Mingaleev
, and
D. A.
Hammer
, “
Studying the dynamics of hybrid X-pinches
,”
Bull. Russ. Acad. Sci. Phys.
82
,
386
389
(
2018
).
65.
J. P.
Joule
, “
On the production of heat by voltaic electricity
,”
Proc. R. Soc. Lond.
4
,
280
(
1843
).
66.
D. B.
Sinars
,
M.
Hu
,
K. M.
Chandler
,
T. A.
Shelkovenko
,
S. A.
Pikuz
,
J. B.
Greenly
,
D. A.
Hammer
, and
B. R.
Kusse
, “
Experiments measuring the initial energy deposition, expansion rates and morphology of exploding wires with about 1 kA/wire
,”
Phys. Plasmas
8
,
216
230
(
2001
).
67.
G. S.
Sarkisov
,
K. W.
Struve
, and
D. H.
McDaniel
, “
Effect of current rate on energy deposition into exploding metal wires in vacuum
,”
Phys. Plasmas
11
,
4573
4581
(
2004
).
68.
G. S.
Sarkisov
,
K. W.
Struve
, and
D. H.
McDaniel
, “
Effect of deposited energy on the structure of an exploding tungsten wire core in a vacuum
,”
Phys. Plasmas
12
,
052702
(
2005
).
69.
S. V.
Lebedev
and
A. I.
Savvatimskiĭ
, “
Metals during rapid heating by dense currents
,”
Sov. Phys. Usp.
27
,
749
771
(
1984
).
70.
F. N.
Beg
,
A. E.
Dangor
,
P.
Lee
,
M.
Tatarakis
,
S. L.
Niffikeer
, and
M. G.
Haines
, “
Optical and x-ray observations of carbon and aluminium fibre Z-pinch plasmas
,”
Plasma Phys. Controlled Fusion
39
,
1
25
(
1997
).
71.
G. S.
Sarkisov
, “
Effect of electrodes on microsecond explosion of thin metal wires in vacuum
,”
Phys. Plasmas
27
,
122105
(
2020
).
72.
I. K.
Aivazov
,
V. D.
Vikharev
,
G. S.
Volkov
,
L. B.
Nikandrov
,
V. P.
Smirnov
, and
V. Ya.
Tsarfin
, “
Formation of axial foreplasma channel in the initial stage of the compression of a multiwire system by mega-ampere currents (experimental)
,”
Sov. J. Plasma Phys.
14
,
110
113
(
1988
).
73.
D. H.
Kalantar
and
D. A.
Hammer
, “
Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments
,”
Phys. Rev. Lett.
71
,
3806
3809
(
1993
).
74.
G. S.
Sarkisov
,
B.
Etlicher
,
S.
Attelan
, and
C.
Rouille
, “
Detection of a “cold core” in a z-pinch formed in a wire explosion
,”
J. Exp. Theor. Phys. Lett.
61
,
547
551
(
1995
).
75.
J.
Ruiz-Camacho
,
F. N.
Beg
,
A. E.
Dangor
,
M. G.
Haines
,
E. L.
Clark
, and
I.
Ross
, “
Z-pinch discharges in aluminum and tungsten wires
,”
Phys. Plasmas
6
,
2579
2587
(
1999
).
76.
B.
Jones
,
C.
Deeney
,
J. L.
McKenney
,
C. J.
Garasi
,
T. A.
Mehlhorn
,
A. C.
Robinson
,
S. E.
Wunsch
,
S. N.
Bland
,
S. V.
Lebedev
,
J. P.
Chittenden
,
S. C.
Bott
,
D. J.
Ampleford
,
J. B. A.
Palmer
,
J.
Rapley
,
G. N.
Hall
, and
B. V.
Oliver
, “
Study of three-dimensional structure in wire-array Z pinches by controlled seeding of axial modulations in wire radius
,”
Phys. Rev. Lett.
95
,
225001
(
2005
).
77.
F. N.
Beg
,
A.
Ciardi
,
I.
Ross
,
Y.
Zhu
,
A. E.
Dangor
, and
K.
Krushelnick
, “
Jet formation and current transfer in X-pinches
,”
IEEE Trans. Plasma Sci.
34
,
2325
2329
(
2006
).
78.
A. J.
Harvey-Thompson
,
S. V.
Lebedev
,
S. N.
Bland
,
J. P.
Chittenden
,
G. N.
Hall
,
A.
Marocchino
,
F.
Suzuki-Vidal
,
S. C.
Bott
,
J. B. A.
Palmer
, and
C.
Ning
, “
Quantitative analysis of plasma ablation using inverse wire array Z pinches
,”
Phys. Plasmas
16
,
022701
(
2009
).
79.
D. M.
Haas
,
S. C.
Bott
,
J.
Kim
,
D. A.
Mariscal
,
R. E.
Madden
,
Y.
Eshaq
,
U.
Ueda
,
G.
Collins IV
,
K.
Gunasekera
,
F. N.
Beg
,
J. P.
Chittenden
,
N.
Niasse
, and
C. A.
Jennings
, “
Supersonic jet formation and propagation in X-pinches
,”
Astrophys. Space Sci.
336
,
33
40
(
2011
).
80.
G. W.
Collins
,
D.
Marsical
,
D. M.
Haas
,
R. E.
Madden
,
K.
Gunasekara
,
J.
Kim
,
M. L. L.
Abarr
,
S. C.
Bott
,
J. P.
Chittenden
, and
F. N.
Beg
, “
Effect of the global to local magnetic field ratio on the ablation modulations on X-pinches driven by 80 kA peak current
,”
New J. Phys.
14
,
043021
(
2012
).
81.
V. I.
Oreshkin
,
S. A.
Chaikovsky
,
A. P.
Artyomov
,
N. A.
Labetskaya
,
A. V.
Fedunin
,
A. G.
Rousskikh
, and
A. S.
Zhigalin
, “
X-pinch dynamics: Neck formation and implosion
,”
Phys. Plasmas
21
,
102711
(
2014
).
82.
W. H.
Bennett
, “
Magnetically self-focussing streams
,”
Phys. Rev.
45
,
890
897
(
1934
).
83.
R. S.
Pease
, “
Equilibrium characteristics of a pinched gas discharge cooled by bremsstrahlung radiation
,”
Proc. Phys. Soc. Sect. B
70
,
11
23
(
1957
).
84.
S. I.
Braginskii
, “
The behavior of a completely ionized plasma in a strong magnetic field
,”
Sov. J. Exp. Theor. Phys.
6
,
645
654
(
1958
).
85.
J. W.
Shearer
, “
Contraction of z pinches actuated by radiation losses
,”
Phys. Fluids
19
,
1426
1428
(
1976
).
86.
M.
Coppins
, “
Ideal magnetohydrodynamic linear instabilities in the Z-pinch
,”
Plasma Phys. Controlled Fusion
30
,
201
216
(
1988
).
87.
A. E.
Robson
, “
Anomalous resistivity and the Pease–Braginskii current in a z pinch
,”
Phys. Rev. Lett.
63
,
2816
2818
(
1989
).
88.
V. I.
Oreshkin
,
E. V.
Oreshkin
,
S. A.
Chaikovsky
, and
A. P.
Artyomov
, “
Coulomb explosion of “hot spot”
,”
Phys. Plasmas
23
,
092701
(
2016
).
89.
G. S.
Sarkisov
,
A. S.
Shikanov
,
B.
Etlicher
,
S.
Attelan
,
C.
Rouille
, and
V. V.
Yan’kov
, “
Structure of the magnetic fields in Z-pinches
,”
J. Exp. Theor. Phys.
108
,
1355
1372
(
1995
).
90.
M. A.
Liberman
,
J. S.
De Groot
,
A.
Toor
, and
R. B.
Spielman
, “Dynamics of z-pinch plasmas,” in Physics of High-Density Z-Pinch Plasmas (Springer, New York, NY, 1999), pp. 44–95.
91.
J. P.
Chittenden
, “
The effect of lower hybrid instabilities on plasma confinement in fiber Z pinches
,”
Phys. Plasmas
2
,
1242
1249
(
1995
).
92.
M.
Haines
, “
Kinetic effects in Z pinches
,”
Laser Part. Beams
19
,
345
353
(
2001
).
93.
H.
Dreicer
, “
Electron and ion runaway in a fully ionized gas. II
,”
Phys. Rev.
117
,
329
342
(
1960
).
94.
L.
Hesslow
,
L.
Unnerfelt
,
O.
Vallhagen
,
O.
Embreus
,
M.
Hoppe
,
G.
Papp
, and
T.
Fülöp
, “
Evaluation of the Dreicer runaway generation rate in the presence of high-Z impurities using a neural network
,”
J. Plasma Phys.
85
,
475850601
(
2019
).
95.
G. S.
Sarkisov
,
A. S.
Shikanov
,
B.
Etlicher
,
S.
Attelan
,
C.
Rouille
, and
V. V.
Yan’kov
, “
Detection of a “cold core” in a z-pinch formed in a wire explosion
,”
J. Exp. Theor. Phys. Lett.
61
,
471
476
(
1995
).
96.
M. P.
Valdivia
,
F.
Veloso
,
D.
Stutman
,
C.
Stoeckl
,
C.
Mileham
,
I. A.
Begishev
,
W.
Theobald
,
M.
Vescovi
,
W.
Useche
,
S. P.
Regan
,
B.
Albertazzi
,
G.
Rigon
,
P.
Mabey
,
T.
Michel
,
S. A.
Pikuz
,
M.
Koenig
, and
A.
Casner
, “
X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot–Lau deflectometry
,”
Rev. Sci. Instrum.
89
,
10G127
(
2018
).
97.
“Opto diode corporation,” see http://optodiode.com/pdf/AXUVHS5.pdf (2019).
98.
E.
Baronova
,
B.
Bucher
,
D.
Haas
,
D.
Fedin
,
A.
Stepanenko
, and
F. N.
Beg
, “
Three-channel x-ray crystal spectrometer for diagnosing high energy density plasmas
,”
Rev. Sci. Instrum.
77
,
103104
(
2006
).
99.
S.
Hansen
,
J.
Bauche
,
C.
Bauche-Arnoult
, and
M.
Gu
, “
Hybrid atomic models for spectroscopic plasma diagnostics
,”
High Energy Density Phys.
3
,
109
114
(
2007
).
100.
S.
Hansen
, “
Configuration interaction in statistically complete hybrid-structure atomic models1this article is part of a special issue on the 10th international colloquium on atomic spectra and oscillator strengths for astrophysical and laboratory plasmas
,”
Can. J. Phys.
89
,
633
638
(
2011
).
101.
S.
Hansen
,
G.
Armstrong
,
S.
Bastiani-Ceccotti
,
C.
Bowen
,
H.-K.
Chung
,
J.
Colgan
,
F.
de Dortan
,
C.
Fontes
,
F.
Gilleron
,
J.-R.
Marquès
,
R.
Piron
,
O.
Peyrusse
,
M.
Poirier
,
Y.
Ralchenko
,
A.
Sasaki
,
E.
Stambulchik
, and
F.
Thais
, “
Testing the reliability of non-LTE spectroscopic models for complex ions
,”
High Energy Density Phys.
9
,
523
527
(
2013
).
102.
H.-K.
Chung
,
M. H.
Chen
,
W. L.
Morgan
,
Y.
Ralchenko
, and
R. W.
Lee
, “
Flychk: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements
,”
High Energy Density Phys.
1
,
3
(
2005
).
103.
P.
Choi
,
C.
Dumitrescu-Zoita
,
B.
Etlicher
, and
A. V.
Shislov
, “A hard x-ray slit-wire camera,” in Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference (IEEE, 1995), Vol. 2, pp. 886–891.
104.
F. N.
Beg
,
S. V.
Lebedev
,
S. N.
Bland
,
J. P.
Chittenden
,
A. E.
Dangor
, and
M. G.
Haines
, “
The effect of current prepulse on wire array Z-pinch implosions
,”
Phys. Plasmas
9
,
375
377
(
2002
).
105.
G. S.
Sarkisov
,
S. E.
Rosenthal
,
K. W.
Struve
,
T. E.
Cowan
,
R.
Presura
,
A. L.
Astanovitskiy
,
A.
Haboub
, and
A.
Morozov
, “
Initiation of aluminum wire array on the 1-Ma zebra accelerator and its effect on ablation dynamics and x-ray yield
,”
Phys. Plasmas
14
,
112701
(
2007
).
106.
F. W.
Sears
,
M. W.
Zemansky
, and
H. D.
Young
,
University Physics
, 6th ed. (
Addison-Wesley Publishing Company
,
1981
).
107.
“Technical information: Nickel,” see http://www.goodfellowusa.com/PDF/TAB003A.pdf (2020) (last accessed January 31, 2020.
108.
J. R.
Davis
,
Copper and Copper Alloys
(
ASM International
,
2001
).
109.
R. E.
Madden
,
S. C.
Bott
,
D.
Haas
,
Y.
Eshaq
,
U.
Ueda
,
G.
Collins
, and
F. N.
Beg
, “
Cross-point coronal plasma dynamics in two- and four-wire X-pinches
,”
Phys. Plasmas
15
,
112701
(
2008
).
110.
H. R.
Griem
, Principles of Plasma Spectroscopy, Cambridge Monographs on Plasma Physics (Cambridge University Press, 1997).
111.
R. J.
Goldston
,
Introduction to Plasma Physics
(
Institute of Physics Publishing
,
Philadelphia, PA
,
1995
).
112.
P. W.
Rambo
and
R. J.
Procassini
, “
A comparison of kinetic and multifluid simulations of laser-produced colliding plasmas
,”
Phys. Plasmas
2
,
3130
3145
(
1995
).
You do not currently have access to this content.