The profile of suspended silicon nitride thin films patterned with one-dimensional subwavelength grating structures is investigated using atomic force microscopy. We first show that the results of the profilometry can be used as input to rigorous coupled wave analysis simulations to predict the transmission spectrum of the gratings under illumination by monochromatic light at normal incidence and compare the results of the simulations with experiments. Second, we observe sharp vertical deflections of the films at the boundaries of the patterned area due to local modifications of the tensile stress during the patterning process. These deflections are experimentally investigated for various grating structures and discussed on the basis of a simple analytical model and finite element method simulations.

1.
C. J.
Chang-Hasnain
and
W.
Yang
, “
High-contrast gratings for integrated optoelectronics
,”
Adv. Opt. Photon.
4
,
379
440
(
2012
).
2.
W.
Zhou
,
D.
Zhao
,
Y.-C.
Shuai
,
H.
Yang
,
S.
Chuwongin
,
A.
Chadha
,
J.-H.
Seo
,
K. X.
Wang
,
V.
Liu
,
Z.
Ma
, and
S.
Fan
, “
Progress in 2d photonic crystal fano resonance photonics
,”
Prog. Quantum Electron.
38
,
1
74
(
2014
).
3.
G.
Quaranta
,
G.
Basset
,
O. J. F.
Martin
, and
B.
Gallinet
, “
Recent advances in resonant waveguide gratings
,”
Laser Photon. Rev.
12
,
1800017
(
2018
).
4.
P.
Cheben
,
R.
Halir
,
J. H.
Schmid
,
H. A.
Atwater
, and
D. R.
Smith
, “
Subwavelength integrated photonics
,”
Nature
560
,
565
572
(
2018
).
5.
Y.
Shuai
,
D.
Zhao
,
Z.
Tian
,
J.-H.
Seo
,
D. V.
Plant
,
Z.
Ma
,
S.
Fan
, and
W.
Zhou
, “
Double-layer fano resonance photonic crystal filters
,”
Opt. Express
21
,
24582
24589
(
2013
).
6.
Y.
Wang
,
D.
Stellinga
,
A. B.
Klemm
,
C. P.
Reardon
, and
T. F.
Krauss
, “
Tunable optical filters based on silicon nitride high contrast gratings
,”
IEEE J. Sel. Top. Quantum Electron.
21
,
108
113
(
2015
).
7.
Y.
Zhou
,
M. C. Y.
Huang
, and
C. J.
Chang-Hasnain
, “
Tunable vcsel with ultra-thin high contrast grating for high-speed tuning
,”
Opt. Express
16
,
14221
14226
(
2008
).
8.
J. S.
Penades
,
A. O.-M.
nux
,
M.
Nedeljkovic
,
J. G.
Wangüemert-Pérez
,
R.
Halir
,
A. Z.
Khokhar
,
C.
Alonso-Ramos
,
Z.
Qu
,
I.
Molina-Fernández
,
P.
Cheben
, and
G. Z.
Mashanovich
, “
Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding
,”
Opt. Express
24
,
22908
22916
(
2016
).
9.
J.
Kang
,
Z.
Cheng
,
W.
Zhou
,
T.-H.
Xiao
,
K.-L.
Gopalakrisna
,
M.
Takenaka
,
H. K.
Tsang
, and
K.
Goda
, “
Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides
,”
Opt. Lett.
42
,
2094
2097
(
2017
).
10.
F.
Brückner
,
D.
Friedrich
,
T.
Clausnitzer
,
M.
Britzger
,
O.
Burmeister
,
K.
Danzmann
,
E.-B.
Kley
,
A.
Tünnermann
, and
R.
Schnabel
, “
Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal
,”
Phys. Rev. Lett.
104
,
163903
(
2010
).
11.
D.
Fattal
,
J.
Li
,
Z.
Peng
,
M.
Fiorentino
, and
R. G.
Beausoleil
, “
Flat dielectric grating reflectors with focusing abilities
,”
Nat. Photon.
4
,
466
(
2010
).
12.
F.
Lu
,
F. G.
Sedgwick
,
V.
Karagodsky
,
C.
Chase
, and
C. J.
Chang-Hasnain
, “
Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings
,”
Opt. Express
18
,
12606
12614
(
2010
).
13.
A. B.
Klemm
,
D.
Stellinga
,
E. R.
Martins
,
L.
Lewis
,
G.
Huyet
,
L.
O’Faolain
, and
T. F.
Krauss
, “
Experimental high numerical aperture focusing with high contrast gratings
,”
Opt. Lett.
38
,
3410
3413
(
2013
).
14.
M.
Mutlu
,
A. E.
Akosman
,
G.
Kurt
,
M.
Gokkavas
, and
E.
Ozbay
, “
Experimental realization of a high-contrast grating based broadband quarter-wave plate
,”
Opt. Express
20
,
27966
27973
(
2012
).
15.
D. A.
Bykov
,
L. L.
Doskolovich
,
A. A.
Morozov
,
V. V.
Podlipnov
,
E. A.
Bezus
,
P.
Verma
, and
V. A.
Soifer
, “
First-order optical spatial differentiator based on a guided-mode resonant grating
,”
Opt. Express
26
,
10997
11006
(
2018
).
16.
Z.
Dong
,
J.
Si
,
X.
Yu
, and
X.
Deng
, “
Optical spatial differentiator based on subwavelength high-contrast gratings
,”
Appl. Phys. Lett.
112
,
181102
(
2018
).
17.
W.
Yang
,
X.
Yu
,
J.
Zhang
, and
X.
Deng
, “
Plasmonic transmitted optical differentiator based on the subwavelength gold gratings
,”
Opt. Lett.
45
,
2295
2298
(
2020
).
18.
A.
Parthenopoulos
,
A. A.
Darki
,
B. R.
Jeppesen
, and
A.
Dantan
, “Optical spatial differentiation using suspended subwavelength gratings,” arXiv:2008.10945 (2020).
19.
S.
Boutami
,
B.
Benbakir
,
X.
Letartre
,
J.
Leclercq
,
P.
Regreny
, and
P.
Viktorovitch
, “
Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors
,”
Opt. Express
15
,
12443
12449
(
2007
).
20.
M. C. Y.
Huang
,
Y.
Zhou
, and
C. J.
Chang-Hasnain
, “
A nanoelectromechanical tunable laser
,”
Nat. Photon.
2
,
180
(
2008
).
21.
T.
Wagner
,
M.
Sudzius
,
A.
Mischok
,
H.
Fröb
, and
K.
Leo
, “
Cross-coupled composite-cavity organic microresonators
,”
Appl. Phys. Lett.
109
,
043302
(
2016
).
22.
L.
Midolo
,
A.
Schliesser
, and
A.
Fiore
, “
Nano-opto-electro-mechanical systems
,”
Nat. Nanotechnol.
13
,
11
18
(
2018
).
23.
V.
Ierardi
,
U.
Becker
,
S.
Pantazis
,
G.
Firpo
,
U.
Valbusa
, and
K.
Jousten
, “
Nano-holes as standard leak elements
,”
Measurement
58
,
335
341
(
2014
).
24.
A.
Peltonen
,
H. Q.
Nguyen
,
J. T.
Muhonen
, and
J. P.
Pekola
, “
Milling a silicon nitride membrane by focused ion beam
,”
J. Vac. Sci. Technol. B
34
,
062201
(
2016
).
25.
B.
Nair
,
A.
Naesby
,
B. R.
Jeppesen
, and
A.
Dantan
, “
Suspended silicon nitride thin films with enhanced and electrically tunable reflectivity
,”
Phys. Scr.
94
,
125013
(
2019
).
26.
C. J.
Chang-Hasnain
,
Y.
Zhou
,
M. C. Y.
Huang
, and
C.
Chase
, “
High-contrast grating vcsels
,”
IEEE J. Sel. Top. Quantum Electron.
15
,
869
878
(
2009
).
27.
A.
Günay-Demirkol
and
I. I.
Kaya
, “
Tuning of nanogap size in high tensile stress silicon nitride thin films
,”
Rev. Sci. Instrum.
83
,
055003
(
2012
).
28.
Y.-R.
Kim
,
P.
Chen
,
M. J.
Aziz
,
D.
Branton
, and
J. J.
Vlassak
, “
Focused ion beam induced deflections of freestanding thin films
,”
J. Appl. Phys.
100
,
104322
(
2006
).
29.
A.
Ajovalasit
,
G.
Petrucci
, and
M.
Scafidi
, “
Photoelastic analysis of edge residual stresses in glass by the automated tint plate method
,”
Exp. Tech.
39
,
11
18
(
2015
).
30.
T.
Capelle
,
Y.
Tsaturyan
,
A.
Barg
, and
A.
Schliesser
, “
Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators
,”
Appl. Phys. Lett.
110
,
181106
(
2017
).
31.
U.
Kemiktarak
,
M.
Metcalfe
,
M.
Durand
, and
J.
Lawall
, “
Mechanically compliant grating reflectors for optomechanics
,”
Appl. Phys. Lett.
100
,
061124
(
2012
).
32.
C. H.
Bui
,
J.
Zheng
,
S. W.
Hoch
,
L. Y. T.
Lee
,
J. G. E.
Harris
, and
C. W.
Wong
, “
High-reflectivity, high-q micromechanical membranes via guided resonances for enhanced optomechanical coupling
,”
Appl. Phys. Lett.
100
,
021110
(
2012
).
33.
U.
Kemiktarak
,
M.
Durand
,
M.
Metcalfe
, and
J.
Lawall
, “
Cavity optomechanics with sub-wavelength grating mirrors
,”
New J. Phys.
14
,
125010
(
2012
).
34.
U.
Kemiktarak
,
M.
Durand
,
M.
Metcalfe
, and
J.
Lawall
, “
Mode competition and anomalous cooling in a multimode phonon laser
,”
Phys. Rev. Lett.
113
,
030802
(
2014
).
35.
C.
Stambaugh
,
H.
Xu
,
U.
Kemiktarak
,
J.
Taylor
, and
J.
Lawall
, “
From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating
,”
Ann. Phys.
527
,
81
88
(
2015
).
36.
W.
Yang
,
S. A.
Gerke
,
K. W.
Ng
,
Y.
Rao
,
C.
Chase
, and
C. J.
Chang-Hasnain
, “
Laser optomechanics
,”
Sci. Rep.
5
,
13700
(
2015
).
37.
R. A.
Norte
,
J. P.
Moura
, and
S.
Gröblacher
, “
Mechanical resonators for quantum optomechanics experiments at room temperature
,”
Phys. Rev. Lett.
116
,
147202
(
2016
).
38.
S.
Bernard
,
C.
Reinhardt
,
V.
Dumont
,
Y.-A.
Peter
, and
J. C.
Sankey
, “
Precision resonance tuning and design of sin photonic crystal reflectors
,”
Opt. Lett.
41
,
5624
5627
(
2016
).
39.
X.
Chen
,
C.
Chardin
,
K.
Makles
,
C.
Caër
,
S.
Chua
,
R.
Braive
,
I.
Robert-Philip
,
T.
Briant
,
P.-F.
Cohadon
,
A.
Heidmann
,
T.
Jacqmin
, and
S.
Deléglise
, “
High-finesse Fabry–Perot cavities with bidimensional Si3N4 photonic-crystal slabs
,”
Light Sci. Appl.
6
,
e16190
(
2017
).
40.
J. P.
Moura
,
R. A.
Norte
,
J.
Guo
,
C.
Schäfermeier
, and
S.
Gröblacher
, “
Centimeter-scale suspended photonic crystal mirrors
,”
Opt. Express
26
,
1895
1909
(
2018
).
41.
S.
Kini Manjeshwar
,
K.
Elkhouly
,
J. M.
Fitzgerald
,
M.
Ekman
,
Y.
Zhang
,
F.
Zhang
,
S. M.
Wang
,
P.
Tassin
, and
W.
Wieczorek
, “
Suspended photonic crystal membranes in AlGaAs heterostructures for integrated multi-element optomechanics
,”
Appl. Phys. Lett.
116
,
264001
(
2020
).
42.
J.
Guo
,
R. A.
Norte
, and
S.
Gröblacher
, “
Integrated optical force sensors using focusing photonic crystal arrays
,”
Opt. Express
25
,
9196
9203
(
2017
).
43.
A.
Naesby
and
A.
Dantan
, “
Microcavities with suspended subwavelength structured mirrors
,”
Opt. Express
26
,
29886
29894
(
2018
).
44.
C.
Gärtner
,
J. P.
Moura
,
W.
Haaxman
,
R. A.
Norte
, and
S.
Gröblacher
, “
Integrated optomechanical arrays of two high reflectivity sin membranes
,”
Nano Lett.
18
,
7171
7175
(
2018
).
45.
O.
Černotík
,
A.
Dantan
, and
C.
Genes
, “
Cavity quantum electrodynamics with frequency-dependent reflectors
,”
Phys. Rev. Lett.
122
,
243601
(
2019
).
46.
A.
Dantan
, “
Membrane sandwich squeeze film pressure sensors
,”
J. Appl. Phys.
128
,
091101
(
2020
).
47.
U.
Hübner
,
W.
Morgenroth
,
H. G.
Meyer
,
T.
Sulzbach
,
B.
Brendel
, and
W.
Mirandé
, “
Downwards to metrology in nanoscale: Determination of the afm tip shape with well-known sharp-edged calibration structures
,”
Appl. Phys. A
76
,
913
917
(
2003
).
48.
L.
Liu
,
N.
Xi
,
J.
Zhang
,
G.
Li
,
Y.
Wang
, and
Z.
Dong
, “System positioning error compensated by local scan in atomic force microscope based nanomanipulation,” in 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2008), pp. 1113–1118.
49.
T.
Germer
, “Modeled integrated scatter tool version 3.01.”
50.
S.
Fan
and
J. D.
Joannopoulos
, “
Analysis of guided resonances in photonic crystal slabs
,”
Phys. Rev. B
65
,
235112
(
2002
).
51.
D. A.
Bykov
and
L. L.
Doskolovich
, “
Spatiotemporal coupled-mode theory of guided-mode resonant gratings
,”
Opt. Express
23
,
19234
19241
(
2015
).
52.
S.
Timoshenko
and
S.
Woinowsky-Krieger
,
Theory of Plates and Shells
(
MacGraw-Hill
,
New York
,
1959
).
53.
O.
Zienkiewicz
,
R.
Taylor
, and
D.
Fox
,
The Finite Element Method for Solid and Structural Mechanics
, 7th ed. (
Butterworth-Heinemann
,
Oxford
,
2014
).
You do not currently have access to this content.