Electrical discharges in liquids are considered an efficient and ecological technique of nanoparticle synthesis via controlled erosion of electrodes. Herein, we use spark discharges between Co–Co, Ni–Ni, Co–Ni, or Ni–Co electrodes immersed in distilled water to synthesize Co and/or Ni nanoparticles, as well as their oxides. When mixed electrodes are used (Co–Ni or Ni–Co), both Co and Ni nanoparticles are produced, and the major species is dictated by the nature of the anode pin. The characteristics of nanoparticles synthesized under varying conditions of pulse width (100 and 500 ns) and voltage amplitude (5 and 20 kV) are analyzed by transmission electron microscopy. Within the investigated discharge conditions, it is not possible to produce Co–Ni nanoalloys; however, core–shell nanoparticles are observed among the Ni and Co nanoparticles. Finally, the direct optical bandgaps of the nanomaterials are determined using UV-visible absorption spectroscopy.

1.
X.
He
and
H. M.
Hwang
, “
Nanotechnology in food science: Functionality, applicability, and safety assessment
,”
J. Food Drug Anal.
24
(
4
),
671
681
(
2016
).
2.
T.
Singh
,
S.
Shukla
,
P.
Kumar
,
V.
Wahla
,
V. K.
Bajpai
, and
I. A.
Rather
, “
Application of nanotechnology in food science: Perception and overview
,”
Front. Microbiol.
8
,
1501
(
2017
).
3.
M.
Gu
,
Q.
Zhang
, and
S.
Lamon
, “
Nanomaterials for optical data storage
,”
Nat. Rev. Mater.
1
(
12
),
16070
(
2016
).
4.
M.
Mansuripur
, “
The role of nano-technology in data storage devices and systems
,” in
Joint International Symposium on Optical Memory and Optical Data Storage
(
Optical Society of America
,
2011
), p. OMA2.
5.
P.
Nasimi
and
M.
Haidari
, “
Medical use of nanoparticles: Drug delivery and diagnosis diseases
,”
Int. J. Green Nanotechnol.
1
,
1
5
(
2013
).
6.
S. K.
Murthy
, “
Nanoparticles in modern medicine: State of the art and future challenges
,”
Int. J. Nanomed.
2
(
2
),
129
(
2007
), available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673971/.
7.
W. J.
Beek
,
M. M.
Wienk
, and
R. A. J.
Janssen
, “
Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer
,”
Adv. Mater.
16
(
12
),
1009
1013
(
2004
).
8.
D.
Beydoun
,
R.
Amal
,
G.
Low
, and
S.
McEvoy
, “
Role of nanoparticles in photocatalysis
,”
J. Nanopart. Res.
1
(
4
),
439
458
(
1999
).
9.
D. O.
Oseguera-Galindo
,
R.
Machorro-Mejia
,
N.
Bogdanchikova
, and
J. D.
Mota-Morales
, “
Silver nanoparticles synthesized by laser ablation confined in urea choline chloride deep-eutectic solvent
,”
Colloid Interface Sci. Commun.
12
,
1
4
(
2016
).
10.
J. P.
Sylvestre
,
S.
Poulin
,
A. V.
Kabashin
,
E.
Sacher
,
M.
Meunier
, and
J. H.
Luong
, “
Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media
,”
J. Phys. Chem. B
108
(
43
),
16864
16869
(
2004
).
11.
A. A.
Popov
,
G.
Tselikov
,
N.
Dumas
,
C.
Berard
,
K.
Metwally
,
N.
Jones
, and
A.
Da Silva
, “
Laser-synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications
,”
Sci. Rep.
9
(
1
),
1194
(
2019
).
12.
A.
Hamdan
,
R.
Abdul Halim
,
D.
Anjum
, and
M. S.
Cha
, “
Synthesis of SiOC:H nanoparticles by electrical discharge in hexamethyldisilazane and water
,”
Plasma Processes Polym.
14
(
12
),
1700089
(
2017
).
13.
A.
Hamdan
,
C.
Noel
,
J.
Ghanbaja
,
S.
Migot-Choux
, and
T.
Belmonte
, “
Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane
,”
Mater. Chem. Phys.
142
(
1
),
199
206
(
2013
).
14.
A.
Hamdan
and
M. S.
Cha
, “
Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: N-heptane and water
,”
J. Phys. D Appl. Phys.
51
(
24
),
244003
(
2018
).
15.
P. K.
Mishra
and
A.
Ekielski
, “
The self-assembly of lignin and its application in nanoparticle synthesis: A short review
,”
Nanomaterials
9
(
2
),
243
(
2019
).
16.
N. K. R.
Eswar
,
S. A.
Singh
, and
J.
Heo
, “
Atomic layer deposited photocatalysts: Comprehensive review on viable fabrication routes and reactor design approaches for photo-mediated redox reactions
,”
J. Mater. Chem. A
7
(
30
),
17703
17734
(
2019
).
17.
M.
Salavati-Niasari
and
A.
Khansari
, “
Synthesis and characterization of Co3O4 nanoparticles by a simple method
,”
C. R. Chim.
17
(
4
),
352
358
(
2014
).
18.
K. F.
Wadekar
,
K. R.
Nemade
, and
S. A.
Waghuley
, “
Chemical synthesis of cobalt oxide
,”
Res. J. Chem.
7
(
1
),
53
55
(
2017
), available at http://www.isca.me/rjcs/Archives/v7/i1/9.ISCA-RJCS-2016-055.pdf.
19.
A. P.
Ingle
,
A.
Biswas
,
C.
Vanlalveni
,
R.
Lalfakzuala
,
I.
Gupta
,
P.
Ingle
 et al, “
Biogenic synthesis of nanoparticles and their role in the management of plant pathogenic fungi
,” in
Microbial Nanotechnology
, edited by R. Mahendra and P. Golińska (
CRC Press
,
2020
), Chap. 8.
20.
A.
Rahdar
,
M.
Aliahmad
, and
Y.
Azizi
, “
NiO nanoparticles: Synthesis and characterization
,”
J. Nanostruct.
5
(
2
),
145
151
(
2015
).
21.
M.
El-Kemary
,
N.
Nagy
, and
I.
El-Mehasseb
, “
Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose
,”
Mater. Sci. Semicond. Process.
16
(
6
),
1747
1752
(
2013
).
22.
T. V.
Pfeiffer
,
J.
Feng
, and
A.
Schmidt-Ott
, “
New developments in spark production of nanoparticles
,”
Adv. Powder Technol.
25
(
1
),
56
70
(
2014
).
23.
N. S.
Tabrizi
,
M.
Ullmann
,
V. A.
Vons
,
U.
Lafont
, and
A.
Schmidt-Ott
, “
Generation of nanoparticles by spark discharge
,”
J. Nanopart. Res.
11
(
2
),
315
(
2009
).
24.
X.
Glad
,
J.
Profili
,
M. S.
Cha
, and
A.
Hamdan
, “
Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities
,”
J. Appl. Phys.
127
(
2
),
023302
(
2020
).
25.
H.
Kabbara
,
J.
Ghanbaja
,
C.
Noël
, and
T.
Belmonte
, “
Synthesis of Cu@ ZnO core–shell nanoparticles by spark discharges in liquid nitrogen
,”
Nano-Struct. Nano-Objects
10
,
22
29
(
2017
).
26.
M.
Trad
,
A.
Nominé
,
N.
Tarasenka
,
J.
Ghanbaja
,
C.
Noël
,
M.
Tabbal
, and
T.
Belmonte
, “
Synthesis of Ag and Cd nanoparticles by nanosecond-pulsed discharge in liquid nitrogen
,”
Front. Chem. Sci. Eng.
13
(
2
),
360
368
(
2019
).
27.
T.
Belmonte
,
A.
Hamdan
,
F.
Kosior
,
C.
Noël
, and
G.
Henrion
, “
Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis
,”
J. Phys. D Appl. Phys.
47
(
22
),
224016
(
2014
).
28.
A.
Hamdan
,
H.
Kabbara
,
C.
Noel
,
J.
Ghanbaja
,
A.
Redjaïmia
, and
T.
Belmonte
, “
Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen
,”
Particuology
40
,
152
159
(
2018
).
29.
H.
Kabbara
,
J.
Ghanbaja
,
A.
Redjaïmia
, and
T.
Belmonte
, “
Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2
,”
J. Appl. Crystallogr.
52
(
2
),
304
311
(
2019
).
30.
H.
Kabbara
,
J.
Ghanbaja
,
C.
Noël
, and
T.
Belmonte
, “
Nano-objects synthesized from Cu, Ag and Cu28Ag72 electrodes by submerged discharges in liquid nitrogen
,”
Mater. Chem. Phys.
217
,
371
378
(
2018
).
31.
H.
Kabbara
,
J.
Ghanbaja
,
C.
Noël
, and
T.
Belmonte
, “
Synthesis of copper and zinc nanostructures by discharges in liquid nitrogen
,”
Mater. Chem. Phys.
207
,
350
358
(
2018
).
32.
H.
Kabbara
,
C.
Noel
,
J.
Ghanbaja
,
K.
Hussein
,
D.
Mariotti
,
V.
Švrček
, and
T.
Belmonte
, “
Synthesis of nanocrystals by discharges in liquid nitrogen from Si–Sn sintered electrode
,”
Sci. Rep.
5
(
1
),
1
8
(
2015
).
33.
M.
Trad
,
A.
Nominé
,
C.
Noël
,
J.
Ghanbaja
,
M.
Tabbal
, and
T.
Belmonte
, “
Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecond-pulsed discharges in liquid nitrogen
,”
Plasma Processes Polym.
17
(
5
),
1900255
(
2020
).
34.
V. R.
Mate
,
M.
Shirai
, and
C. V.
Rode
, “
Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen
,”
Catal. Commun.
33
,
66
69
(
2013
).
35.
E.
Saputra
,
X.
Duan
,
J. A.
Pinem
,
S.
Bahri
, and
S.
Wang
, “
Shape-controlled Co3O4 catalysts for advanced oxidation of phenolic contaminants in aqueous solutions
,”
Sep. Purif. Technol.
186
,
213
217
(
2017
).
36.
Y.
Zhou
,
C. K.
Dong
,
L. L.
Han
,
J.
Yang
, and
X. W.
Du
, “
Top-down preparation of active cobalt oxide catalyst
,”
ACS Catal.
6
(
10
),
6699
6703
(
2016
).
37.
F.
Liu
,
Y.
Sang
,
H.
Ma
,
Z.
Li
, and
Z.
Gao
, “
Nickel oxide as an effective catalyst for catalytic combustion of methane
,”
J. Nat. Gas Sci. Eng.
41
,
1
6
(
2017
).
38.
H.
Singh
,
R.
Yadav
,
P.
Rajput
,
D.
Bhattacharyya
,
S. N.
Jha
, and
A. K.
Sinha
, “
Magnetically recoverable Ni/NiO catalyst for hydrogenation of cashew nut shell oil to value-added products
,”
Energy Fuels
33
(
6
),
5332
5342
(
2019
).
39.
A. S.
Adekunle
,
J. A.
Oyekunle
,
O. S.
Oluwafemi
,
A. O.
Joshua
,
A. O.
Makinde
,
A. O.
Ogunfowokan
,
M. A.
Eleruja
, and
E. E.
Ebenso
, “
Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO)
,”
Int. J. Electrochem. Sci.
9
,
3008
3021
(
2014
).
40.
M.
Tadic
,
D.
Nikolic
,
M.
Panjan
, and
G. R.
Blake
, “
Magnetic properties of NiO (nickel oxide) nanoparticles: Blocking temperature and Neel temperature
,”
J. Alloys Compd.
647
,
1061
1068
(
2015
).
41.
Z.
Seidov
,
M.
Açıkgöz
,
S.
Kazan
, and
F.
Mikailzade
, “
Magnetic properties of Co3O4 polycrystal powder
,”
Ceram. Int.
42
(
11
),
12928
12931
(
2016
).
42.
Y.
Ichiyanagi
and
S.
Yamada
, “
The size-dependent magnetic properties of Co3O4 nanoparticles
,”
Polyhedron
24
(
16–17
),
2813
2816
(
2005
).
43.
S. B.
Herner
,
A. D.
Weerakkody
,
A.
Belkadi
, and
G.
Moddel
, “
High performance MIIM diode based on cobalt oxide/titanium oxide
,”
Appl. Phys. Lett.
110
(
22
),
223901
(
2017
).
44.
I.
Azad
,
M. K.
Ram
,
D. Y.
Goswami
, and
E.
Stefanakos
, “
Fabrication and characterization of NiO based metal–insulator–metal diode using Langmuir-Blodgett method for high frequency rectification
,”
AIP Adv.
8
(
4
),
045219
(
2018
).
45.
J.
Li
,
Y.
Shao
,
X.
Chen
,
H.
Wang
,
Y.
Li
, and
Q.
Zhang
, “
All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer
,”
Prog. Nat. Sci. Mater. Int.
26
(
5
),
503
509
(
2016
).
46.
C.
Xiong
,
T.
Zhang
,
W.
Kong
,
Z.
Zhang
,
H.
Qu
,
W.
Chen
,
Y.
Wang
,
L.
Luo
, and
L.
Zheng
, “
ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears
,”
Biosens. Bioelectron.
101
,
21
28
(
2018
).
47.
S.
Mohan
,
P.
Srivastava
,
S. N.
Maheshwari
,
S.
Sundar
, and
R.
Prakash
, “
Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar)
,”
Analyst
136
(
13
),
2845
2851
(
2011
).
48.
S.
Mishra
,
P.
Yogi
,
P. R.
Sagdeo
, and
R.
Kumar
, “
Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing
,”
Nanoscale Res. Lett.
13
(
1
),
16
(
2018
).
49.
A.
Benchettara
and
A.
Benchettara
, “
Electrochemical sensor based on nanoparticles of cobalt oxides for determination of glucose
,”
Mater. Today Proc.
2
(
8
),
4212
4216
(
2015
).
50.
B.
Dalkıran
,
P. E.
Erden
, and
E.
Kılıç
, “
Construction of an electrochemical xanthine biosensor based on graphene/cobalt oxide nanoparticles/chitosan composite for fish freshness detection
,”
J. Turk. Chem. Soc. Sect. A
4
(
1
),
23
44
(
2017
).
51.
K.
He
,
S.
Zhang
,
J.
Li
,
X.
Yu
,
Q.
Meng
,
Y.
Zhu
, and
Y.
Zhu
, “
Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
,”
Nat. Commun.
7
(
1
),
1
9
(
2016
).
52.
H. E.
Swanson
and
E.
Tatge
,
Standard X-Ray Diffraction Powder Pattern
(
National Bureau of Standards
,
1953
).
53.
H. E.
Swanson
,
M. C.
Morris
,
R. P.
Stinchfield
, and
E. H.
Evans
,
Standard X-Ray Diffraction Powder Patterns
(
National Bureau of Standards
,
1962
).
54.
R.
Wang
,
J.
Lang
,
Y.
Liu
,
Z.
Lin
, and
X.
Yan
, “
Ultra-small, size-controlled Ni(OH)2 nanoparticles: Elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices
,”
NPG Asia Mater.
7
(
6
),
e183
e183
(
2015
).
55.
Y.
Luo
,
G.
Li
,
G.
Duan
, and
L.
Zhang
, “
One-step synthesis of spherical α-Ni(OH)2 nanoarchitectures
,”
Nanotechnology
17
(
16
),
4278
(
2006
).
56.
C. A. O.
Yang
,
Q. U.
Guangzhou
,
L. I.
Tengfei
,
N.
Jiang
, and
W. A. N. G.
Tiecheng
, “
Review on reactive species in water treatment using electrical discharge plasma: Formation, measurement, mechanisms and mass transfer
,”
Plasma Sci. Technol.
20
(
10
),
103001
(
2018
).
57.
M. A.
Malik
,
A.
Ghaffar
, and
S. A.
Malik
, “
Water purification by electrical discharges
,”
Plasma Sources Sci. Technol.
10
(
1
),
82
(
2001
).
58.
B.
Sun
,
M.
Sato
,
A.
Harano
, and
J. S.
Clements
, “
Non-uniform pulse discharge-induced radical production in distilled water
,”
J. Electrost.
43
(
2
),
115
126
(
1998
).
59.
V.
Bartůněk
,
Š.
Huber
,
D.
Sedmidubský
,
Z.
Sofer
,
P.
Šimek
, and
O.
Jankovský
, “
Coo and Co3O4 nanoparticles with a tunable particle size
,”
Ceram. Int.
40
(
8
),
12591
12595
(
2014
).
60.
H.
Cui
,
Y.
Zhao
,
W.
Ren
,
M.
Wang
, and
Y.
Liu
, “
Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process
,”
J. Alloys Compd.
562
,
33
37
(
2013
).
61.
J.
Yang
,
H.
Liu
,
W. N.
Martens
, and
R. L.
Frost
, “
Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs
,”
J. Phys. Chem. C
114
(
1
),
111
119
(
2010
).
62.
I.
Sta
,
M.
Jlassi
,
M.
Kandyla
,
M.
Hajji
,
P.
Koralli
,
R.
Allagui
, and
H.
Ezzaouia
, “
Hydrogen sensing by sol–gel grown NiO and NiO:Li thin films
,”
J. Alloys Compd.
626
,
87
92
(
2015
).
63.
S.
Sagadevan
and
J.
Podder
, “
Investigations on structural, optical, morphological and electrical properties of nickel oxide nanoparticles
,”
Int. J. Nanopart.
8
(
3–4
),
289
301
(
2015
).
64.
J. D.
Blakemore
,
H. B.
Gray
,
J. R.
Winkler
, and
A. M.
Müller
, “
Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids
,”
ACS Catal.
3
(
11
),
2497
2500
(
2013
).
65.
L. M.
Alrehaily
,
J. M.
Joseph
,
M. C.
Biesinger
,
D. A.
Guzonas
, and
J. C.
Wren
, “
Gamma-radiolysis-assisted cobalt oxide nanoparticle formation
,”
Phys. Chem. Chem. Phys.
15
(
3
),
1014
1024
(
2013
).
66.
C. R.
Dhas
,
R.
Venkatesh
,
K.
Jothivenkatachalam
,
A.
Nithya
,
B. S.
Benjamin
,
A. M. E.
Raj
, and
C.
Sanjeeviraja
, “
Visible light driven photocatalytic degradation of rhodamine B and direct red using cobalt oxide nanoparticles
,”
Ceram. Int.
41
(
8
),
9301
9313
(
2015
).
67.
S.
Farhadi
,
K.
Pourzare
, and
S.
Sadeghinejad
, “
Synthesis and characterization of Co3O4 nanoplates by simple thermolysis of the [Co(NH3)6]2(C2O4)3⋅4H2O complex
,”
Polyhedron
67
,
104
110
(
2014
).
68.
R.
Li
,
L.
Tang
,
Q.
Zhao
,
T. H.
Ly
,
K. S.
Teng
,
Y.
Li
, and
S. P.
Lau
, “
In2S3 quantum dots: Preparation, properties and optoelectronic application
,”
Nanoscale Res. Lett.
14
(
1
),
161
(
2019
).
69.
S.
Itapu
,
V.
Borra
, and
F.
Mossayebi
, “
A computational study on the variation of bandgap due to native defects in non-stoichiometric NiO and Pd, Pt doping in stoichiometric NiO
,”
Condens. Matter
3
(
4
),
46
(
2018
).
70.
M.
Lenglet
and
C. K.
Jørgensen
, “
Reinvestigation of the optical properties of Co3O4
,”
Chem. Phys. Lett.
229
(
6
),
616
620
(
1994
).
71.
C.
Rödl
and
A.
Schleife
, “
Photoemission spectra and effective masses of n-and p-type oxide semiconductors from first principles: ZnO, CdO, SnO2, MnO, and NiO
,”
Phys. Status Solidi A
211
(
1
),
74
81
(
2014
).
72.
C. S.
Cheng
,
M.
Serizawa
,
H.
Sakata
, and
T.
Hirayama
, “
Electrical conductivity of Co3O4 films prepared by chemical vapour deposition
,”
Mater. Chem. Phys.
53
(
3
),
225
230
(
1998
).
73.
C. S.
Garoufalis
,
A.
Barnasas
,
A.
Stamatelatos
,
V.
Karoutsos
,
S.
Grammatikopoulos
,
P.
Poulopoulos
, and
S.
Baskoutas
, “
A study of quantum confinement effects in ultrathin NiO films performed by experiment and theory
,”
Materials
11
(
6
),
949
(
2018
).
74.
A.
Kashir
,
H. W.
Jeong
,
G. H.
Lee
,
P.
Mikheenko
, and
Y. H.
Jeong
, “
Dielectric properties of strained nickel oxide thin films
,”
J. Korean Phys. Soc.
74
(
10
),
984
988
(
2019
).
You do not currently have access to this content.