Aluminum nanoparticles (nAl) have the potential as energetic additives in explosive/propellant formulations. Scalable methodologies must be pursued to mitigate the inactive amorphous alumina shell surrounding the active aluminum (Al) core with modified surface morphology and chemistry for increased combustion effects. This paper explores the feasibility of making reactive core/shell nAl with thinned oxide shells and modified surface coatings via a two-step atmospheric plasma surface treatment process in a custom dielectric barrier discharge plasma reactor. The commercial nAl of nominal average size ∼40–60nm was first treated with helium (He) followed by He/carbon monoxide (CO) plasmas for different durations. The resultant samples were characterized via high-resolution transmission electron microscopy (HRTEM) and Fourier transform IR (FTIR) spectra. HRTEM images revealed sporadic patchy γ-alumina deposits on particle surfaces and in gaps among particles for all samples, suggesting the non-uniform plasma effects of the He/CO glow. Nanoscale chemical analyses via scanning transmission electron microscopy elemental mapping and x-ray energy dispersive spectroscopy were further performed. Although no carbon-associated structure appeared in electron energy loss spectroscopy (EELS) spectra, the presence of carbonaceous materials was confirmed as a thin dispersive layer evenly distributed on the nAl surface suggesting either its amorphous nature or is present at a level insufficient to generate satisfactory EELS spectra. The trend of intensity profiles for key elements acquired by drawing lines across a single particle on the elemental maps confirmed that carbonaceous materials only existed on the surface and they were most likely carboxylates that increased with increased He/CO treatment duration, as evident by FTIR results. This work demonstrated the success of atmospheric plasma-treated reactive nAl with comprehensively characterized surface features via advanced microscopy and spectroscopy.

1.
E. L.
Dreizin
, “
Metal-based reactive nanomaterials
,”
Prog. Energy Combust. Sci.
35
,
141
(
2009
).
2.
Y.
Aly
,
V. K.
Hoffman
,
M.
Schoenitz
, and
E. L.
Dreizin
, “
Reactive, mechanically alloyed Al·Mg powders with customized particle sizes and compositions
,”
J. Propul. Power
30
,
96
(
2014
).
3.
A.
Sheikhpour
,
S. G.
Hosseini
,
S.
Tavangar
, and
M. H.
Keshavarz
, “
The influence of magnesium powder on the thermal behavior of Al-CuO thermite mixture
,”
J. Therm. Anal. Calorim.
129
,
1847
(
2017
).
4.
D. E.
Eakins
and
N. N.
Thadhani
, “
Role of constituent configuration on shock-induced reactions in a Ni + Al powder mixture
,”
Mater. Res. Soc. Symp. Proc.
896
,
0896-H06-04.1
(
2006
).
5.
E. R.
Wainwright
,
S. W.
Dean
,
S. V.
Lakshman
,
T. P.
Weihs
, and
J. L.
Gottfried
, “
Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels
,”
Combust. Flame
213
,
357
(
2020
).
6.
Y.
Jiang
,
S.
Deng
,
S.
Hong
,
J.
Zhao
,
S.
Huang
,
C.-C.
Wu
,
J. L.
Gottfried
,
K.
Nomura
,
Y.
Li
,
S.
Tiwari
,
R. K.
Kalia
,
P.
Vashishta
,
A.
Nakano
, and
X.
Zheng
, “
Energetic performance of optically activated aluminum/graphene oxide composites
,”
ACS Nano
12
,
11366
(
2018
).
7.
J.
McCollum
,
M. L.
Pantoya
, and
N.
Tamura
, “
Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron x-ray diffraction analysis of strain
,”
Acta Mater.
103
,
495
(
2016
).
8.
A. S.
Mukasyan
,
B. B.
Khina
,
R. V.
Reeves
, and
S. F.
Son
, “
Mechanical activation and gasless explosion: Nanostructural aspects
,”
Chem. Eng. J.
174
,
677
(
2011
).
9.
P. E.
Anderson
,
P.
Cook
,
A.
Davis
, and
K.
Mychajlonka
, “
The effect of binder systems on early aluminum reaction in detonations
,”
Propellants Explos. Pyrotech.
38
,
486
(
2013
).
10.
P.
Brousseau
, “
Nanometric aluminum in explosives
,”
Propellants Explos. Pyrotech.
27
,
300
(
2002
).
11.
C.
Rossi
,
K.
Zhang
,
D.
Estève
,
P.
Alphonse
,
P.
Tailhades
, and
C.
Vahlas
, “
Nanoenergetic materials for MEMS: A review
,”
J. Microelectromech. Syst.
16
,
919
(
2007
).
12.
M. L.
Pantoya
and
J. J.
Granier
, “
Combustion behavior of highly energetic thermites: Nano versus micron composites
,”
Propellants explos. Pyrotech.
30
,
53
(
2005
).
13.
A.
Pivkina
,
P.
Ulyanova
,
Y.
Frolov
,
S.
Zavylov
, and
J.
Schoonman
, “
Nanomaterials for heterogeneous combustion
,”
Propellants Explos. Pyrotech.
29
,
39
(
2004
).
14.
M.
Schoenitz
,
T.
Ward
, and
E. L.
Dreizin
, “
Preparation of energetic metastable nano-composite materials by arrested reactive milling
,”
Mater. Res. Soc. Symp. Proc.
800
,
AA2.6
(
2004
).
15.
C. D.
Yarrington
,
S. F.
Son
,
T. J.
Foley
,
S. J.
Obrey
, and
A. N.
Pacheco
, “
Nano aluminum energetics: The effect of synthesis method on morphology and combustion performance
,”
Propellants Explos. Pyrotech.
36
,
551
(
2011
).
16.
R. J.
Jacob
,
B.
Wei
, and
M. R.
Zachariah
, “
Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles
,”
Combust. Flame
167
,
472
(
2016
).
17.
F.
Wang
,
Z.
Wu
,
X.
Shangguan
,
Y.
Sun
,
J.
Feng
,
Z.
Li
,
L.
Chen
,
R.
Zhuo
, and
P.
Yan
, “
Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers
,”
Sci. Rep.
7
,
5228
(
2017
).
18.
B. S.
Xu
and
S.-I.
Tanaka
, “
Formation of giant onion-like fullerenes under Al nanoparticles by electron irradiation
,”
Acta Mater.
46
,
5249
(
1998
).
19.
K.
Luo
,
N.
Shi
,
H.
Cong
, and
C.
Sun
, “
Electrophoretic deposition of nickel, iron and aluminum nanoparticles on carbon fibers
,”
J. Solid State Electrochem.
10
,
1003
(
2006
).
20.
A.
Ermoline
,
M.
Schoenitz
,
E.
Dreizin
, and
N.
Yao
, “
Production of carbon-coated aluminum nanopowders in pulsed microarc discharge
,”
Nanotechnology
13
,
638
(
2002
).
21.
K.
Park
,
A.
Rai
, and
M. R.
Zachariah
, “
Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry
,”
J. Nanopart. Res.
8
,
455
(
2006
).
22.
L.
Guo
,
W.
Song
,
C.
Xie
,
X.
Zhang
, and
M.
Hu
, “
Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induced complex heating in methane
,”
Mater. Lett.
61
,
3211
(
2007
).
23.
S. A.
Davari
,
J. L.
Gottfried
,
C.
Liu
,
E. L.
Ribeiro
,
G.
Duscher
, and
D.
Mukherjee
, “
Graphitic coated Al nanoparticles manufactured as superior energetic materials via laser ablation synthesis in organic solvents
,”
Appl. Surf. Sci.
473
,
156
(
2019
).
24.
K. K.
Miller
,
J. L.
Gottfried
,
S. D.
Walck
,
M. L.
Pantoya
, and
C.-C.
Wu
, “
Plasma surface treatment of aluminum nanoparticles for energetic material applications
,”
Combust. Flame
206
,
211
(
2019
).
25.
C.-C.
Wu
,
K. K.
Miller
,
S. D.
Walck
, and
M.
Pantoya
, “
Material characterization of plasma-treated aluminum particles via different gases
,”
MRS Adv.
4
,
1589
(
2019
).
26.
H.
Tavakoli
,
P. S.
Maram
,
S. G.
Widgeon
,
J.
Rufner
,
K.
van Benthem
,
S.
Ushakov
,
S.
Sen
, and
A.
Navrotsky
, “
Amorphous alumina nanoparticles: Structure, surface energy, and thermodynamic phase stability
,”
J. Phys. Chem. C
117
,
17123
(
2013
).
27.
G.
Gutiérrez
and
B.
Johansson
, “
Molecular dynamics study of structural properties of amorphous Al2O3
,”
Phys. Rev. B
65
,
104202
(
2002
).
28.
R.
Lizárraga
,
E.
Holmström
,
S. C.
Parker
, and
C.
Arrouvel
, “
Structural characterization of amorphous alumina and its polymorphs from first-principles XPS and NMR calculations
,”
Phys. Rev. B
83
,
094201
(
2011
).
29.
A.
Fridman
,
Plasma Chemistry
(
Cambridge University Press
,
Cambridge
,
2008
).
30.
J.
Ayache
,
L.
Beaunier
,
J.
Boumendil
,
G.
Ehret
, and
D.
Laub
,
Sample Preparation Handbook for Transmission Electron Microscopy Techniques
(
Springer
,
New York
,
2009
).
31.
Center for Nanoscale Materials (CNM), Argonne National Laboratory, Lemont, IL, see https://www.anl.gov/cnm/.
32.
See technical details at https://www.gatan.com/ for basic and advanced analysis tools.
33.
L.
Samain
,
A.
Jaworski
,
M.
Edén
,
D. M.
Ladd
,
D.-K.
Seo
,
F. J.
Garcia-Garcia
, and
U.
Häussermann
, “
Structural analysis of highly porous γ-Al2O3
,”
J. Solid State Chem.
217
,
1
(
2014
).
34.
H.
Caquineau
,
I.
Enache
,
N.
Gherardi
,
N.
Naudé
, and
F.
Massines
, “
Influence of gas flow dynamics on discharge stability and on the uniformity of atmospheric pressure PECVD thin film
,”
J. Phys. D Appl. Phys.
42
,
125201
(
2009
).
35.
A.
Fridman
and
L. A.
Kennedy
,
Plasma Physics and Engineering
(
CRC Press
,
2011
).
36.
Y.
Rozita
,
R.
Brydson
, and
A. J.
Scott
, “
An investigation of commercial gamma-Al2O3 nanoparticles
,”
J. Phys. Conf. Ser.
241
,
012096
(
2010
).
37.
S.
Fritz
,
R.
Schneider
,
L.
Radtke
,
M.
Weides
, and
D.
Gerthsen
, “TEM investigations of Al/Alx/Al Josephson junctions,”
Proceedings of the 16th European Microscopy Congress 2016, Materials Science Session; Oxide-Based, Magnetic and Other Functional Materials and Applications
(Wiley-VCH Verlag GmbH & Co. KGaA, 2016).
38.
F. A.
López
,
M. C.
Pena
, and
A.
López-Delgado
, “
Hydrolysis and heat treatment of aluminum dust
,”
J. Air Waste Manage. Assoc.
51
,
903
(
2001
).
39.
R.
Geiger
and
D.
Staack
,
J. Phys. D Appl. Phys.
44
,
274005
(
2011
).
40.
A. R.
Blake
,
W. T.
Eele
, and
P. P.
Jennings
, “
Carbon suboxide polymers: Part I. Structure of thermal polymers
,”
Trans. Faraday Soc.
60
,
691
(
1964
).
41.
A. R.
Blake
and
A. F.
Hyde
, “
Carbon suboxide polymers: Part II. Pyrolysis of thermal polymers
,”
Trans. Faraday Soc.
60
,
1775
(
1964
).
42.
R. L.
Razouk
and
A. S.
Salem
, “
The adsorption of water vapor on glass surfaces
,”
J. Phys. Chem.
52
,
1208
(
1948
).
43.
T.
Carofiglio
,
L.
Pandolfo
, and
G.
Paiaro
, “
Carbon suboxide polymers
,”
Eur. Polym. J.
22
,
491
(
1986
).
44.
J. S.
auf der Günne
,
J.
Beck
,
W.
Hoffbauer
, and
P.
Krieger
, “
The structure of poly(carbonsuboxide) on the atomic scale: A solid-state NMR study
,”
Chem. Eur. J.
11
,
4429
(
2005
).
You do not currently have access to this content.