Photonic crystals (PCs) are nano-scale, dielectric structures with periodically varying refractive index and unique light propagation properties. Recently, PCs with tunable structural and optical characteristics under external stimuli have garnered extensive attention due to their potential application in smart optical devices. Liquid crystal polymers (LCPs) can generate recoverable deformation upon exposure to external stimuli. Recent experimental studies have demonstrated the tunability of PC films on LCP substrates under thermo- and/or photo-stimuli, which was primarily attributed to the bending of the bilayers. Furthermore, based on Timoshenko's classical bimetallic model, the reflective band shift has been assumed to be proportional to the bending curvature. In this study, based on some analytical solutions that extend the classical model, we demonstrate that the band shifts are proportional to the upper-surface transversal strain that is closely connected but generally not proportional to the bending curvature of the PC/LCP bilayer. Furthermore, it is found that the incorporation of spontaneous bending in addition to spontaneous contractions in the LCP substrates can be extremely helpful for the tunability of PC. This can be achieved either by programming the liquid crystal alignment or/and by light attenuation. The optimized bilayer structures exhibit immense potential to generate large reflective band shifts, especially for relatively softer PC films on stiffer LCP substrates. Overall, our results provide useful insights on the design of tunable PCs and other stimuli-responsive bilayer structures.

1.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals—Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
2008
), pp.
1
6
.
2.
M.
Warner
and
E. M.
Terentjev
,
Liquid Crystal Elastomers
, revised ed. (
Oxford Science Publications
,
2007
).
3.
M.
Yamada
,
M.
Kondo
,
J.-I.
Mamiya
,
Y.
Yu
,
M.
Kinoshita
,
C. J.
Barrett
, and
T.
Ikeda
, “
Photomobile polymer materials: Towards light-driven plastic motors
,”
Angew. Chem. Int. Ed.
47
(
27
),
4986
4988
(
2008
).
4.
G.
Wu
,
Y.
Jiang
,
D.
Xu
,
H.
Tang
,
X.
Liang
, and
G.
Li
, “
Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals
,”
Langmuir
27
(
4
),
1505
1509
(
2011
).
5.
Y.
Jiang
,
D.
Xu
,
X.
Li
,
C.
Lin
,
W.
Li
,
Q.
An
,
C.
Tao
,
H.
Tang
, and
G.
Li
, “
Electrothermally driven structural colour based on liquid crystal elastomers
,”
J. Mater. Chem.
22
(
24
),
11943
11949
(
2012
).
6.
H.
Xing
,
J.
Li
,
Y.
Shi
,
J.
Guo
, and
J.
Wei
, “
Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer
,”
Appl. Mater. Interfaces
8
(
14
),
9440
9445
(
2016
).
7.
S.
Nocentini
,
D.
Martella
,
C.
Parmeggiani
, and
D. S.
Wiersma
, “
Photoresist design for elastomeric light tunable photonic devices
,”
Materials
9
(
7
),
525
(
2016
).
8.
Y.
Sawa
,
K.
Urayama
,
T.
Takigawa
,
A.
DeSimone
, and
L.
Teresi
, “
Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment
,”
Macromolecules
43
(
9
),
4362
4369
(
2010
).
9.
M.
Camacho-Lopez
,
H.
Finkelmann
,
P.
Palffy-Muhoray
, and
M.
Shelley
, “
Fast liquid-crystal elastomer swims into the dark
,”
Nat. Mater.
3
,
307
310
(
2004
).
10.
H.
Finkelmann
,
E.
Nishikawa
,
G. G.
Pereira
, and
M.
Warner
, “
A new opto-mechanical effect in solids
,”
Phys. Rev. Lett.
87
(
1
),
015501
(
2001
).
11.
C. C.
Chang
,
L. C.
Chien
, and
R. B.
Meyer
, “
Electro-optical study of nematic elastomer gels
,”
Phys. Rev. E
56
(
1
),
595
599
(
1997
).
12.
Y.
Yusuf
,
J. H.
Huh
,
P. E.
Cladis
,
H. R.
Brand
,
H.
Finkelmann
, and
S.
Kai
, “
Low-voltage-driven electromechanical effects of swollen liquid-crystal elastomers
,”
Phys. Rev. E
71
(
6
),
061702
(
2005
).
13.
K.
Urayama
,
S.
Honda
, and
T.
Takigawa
, “
Deformation coupled to director rotation in swollen nematic elastomers under electric fields
,”
Macromolecules
39
(
5
),
1943
1949
(
2006
).
14.
N.
Akamatsu
,
M.
Aizawa
,
R.
Tatsumi
,
K.
Hisano
,
A.
Priimagi
, and
A.
Shishido
, “
Photoresponsive liquid-crystalline polymer films bilayer with an inverse opal structure
,”
J. Photopolym. Sci. Technol.
29
(
1
),
145
148
(
2016
).
15.
N.
Akamatsu
,
K.
Hisano
,
R.
Tatsumi
,
M.
Aizawa
,
C. J.
Barrett
, and
A.
Shishido
, “
Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals
,”
Soft Matter
13
(
41
),
7486
7491
(
2017
).
16.
H.
Xing
,
J.
Li
,
J.
Guo
, and
J.
Wei
, “
Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer
,”
J. Mater. Chem. C
3
(
17
),
4424
4430
(
2015
).
17.
Z.
Yan
,
X.
Ji
,
W.
Wu
,
J.
Wei
, and
Y.
Yu
, “
Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation
,”
Macromol. Rapid Commun.
33
(
16
),
1362
1367
(
2012
).
18.
T. A.
Singleton
,
I. B.
Burgess
,
B. A.
Nerger
,
A.
Goulet-Hanssens
,
N.
Koay
,
C. J.
Barrett
, and
J.
Aizenberg
, “
Photo-tuning of highly selective wetting in inverse opals
,”
Soft Matter
10
(
9
),
1325
1328
(
2014
).
19.
J.
Zhao
,
Y.
Liu
, and
Y.
Yu
, “
Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene
,”
J. Mater. Chem. C
2
(
48
),
10262
10267
(
2014
).
20.
S.
Kubo
,
Z.-Z.
Gu
,
K.
Takahashi
,
Y.
Ohko
,
O.
Sato
, and
A.
Fujishima
, “
Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition
,”
J. Am. Chem. Soc.
124
(
37
),
10950
10951
(
2002
).
21.
K.
Sumioka
,
H.
Kayashima
, and
T.
Tsutsui
, “
Tuning the optical properties of inverse opal photonic crystals by deformation
,”
Adv. Mater.
14
(
18
),
1284
1286
(
2002
).
22.
G. G.
Stoney
, “
The tension of metallic films deposited by electrolysis
,”
Proc. R. Soc. Lond. A
82
(
553
),
172
175
(
1909
).
23.
S.
Timoshenko
, “
Analysis of bi-metal thermostats
,”
J. Opt. Soc. Am.
11
(
3
),
233
255
(
1925
).
24.
M.
Yamada
,
M.
Kondo
,
R.
Miyasato
,
Y.
Naka
,
J.
Mamiya
,
M.
Kinoshita
,
Y.
Yu
,
C. J.
Barrett
, and
T.
Ikeda
, “
Photoresponsive behavior of laminated films composed of a flexible plastic sheet and a crosslinked azobenzene liquid-crystalline polymer layer with different initial alignment of mesogens
,”
Mol. Cryst. Liq. Cryst.
498
(
1
),
65
73
(
2009
).
25.
R.
Tatsumi
,
J.-I.
Mamiya
,
M.
Kinoshita
, and
A.
Shishido
, “
Simple method for fabrication of azobenzene-containing crosslinked liquid-crystalline polymer films with bilayer structure
,”
Sci. Adv. Mater.
6
(
7
),
1432
1437
(
2014
).
26.
Y.
Naka
,
J.-I.
Mamiya
,
A.
Shishido
,
M.
Washio
, and
T.
Ikeda
, “
Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation
,”
J. Mater. Chem.
21
(
6
),
1681
1683
(
2011
).
27.
M.
Warner
and
L.
Mahadevan
, “
Photoinduced deformation of beams, plates, and films
,”
Phys. Rev. Lett.
92
(
13
),
134302
(
2004
).
28.
D.
Corbett
and
M.
Warner
, “
Linear and nonlinear photoinduced deformations of cantilevers
,”
Phys. Rev. Lett.
99
(
17
),
174302
(
2007
).
29.
L.
Jin
,
X.
Jiang
, and
Y.
Huo
, “
Light-induced nonhomogeneity and gradient bending in photochromic liquid crystal elastomers
,”
SCI China Ser. G
49
(
5
),
553
563
(
2006
).
30.
B.
Wang
,
Y.
Li
, and
Y.
Huo
, “
Thermal stress distributions and optimization on stress reductions with or/and without linearly graded interlayers
,”
Compos. B Eng.
42
(
5
),
993
1007
(
2011
).
31.
L.
Jin
,
Y.
Lin
, and
Y.
Huo
, “
A large deflection light-induced bending model for liquid crystal elastomers under uniform or non-uniform illumination
,”
Int. J. Solids Struct.
48
(
22–23
),
3232
3242
(
2011
).
32.
B.
Wang
,
Y.
You
, and
Y.
Huo
, “
Opto-thermo actuation of multilayered liquid crystal polymer films
,”
Thin Solid Films
519
(
15
),
5310
5313
(
2011
).
33.
Y.
You
,
C.
Xu
,
B.
Wang
,
L.
Jin
, and
Y.
Huo
, “
Photo-actuated bending of chromatic liquid crystal polymer strips and laminates
,”
Int. J. Smart Nano Mater.
2
(
4
),
245
260
(
2011
).
34.
Y.
You
,
C.
Xu
,
S.
Ding
, and
Y.
Huo
, “
Coupled effects of director orientations and boundary conditions on light induced bending of monodomain nematic liquid crystalline polymer plates
,”
Smart Mater. Struct.
21
(
12
),
125012
(
2012
).
35.
Y.
Zhang
and
Y.
Huo
, “
First order shear strain beam theory for spontaneous bending of liquid crystal polymer strips
,”
Int. J. Solids Struct.
136-137
,
168
185
(
2018
).
36.
C. L.
van Oosten
,
K. D.
Harris
,
C. W. M.
Bastiaansen
, and
D. J.
Broer
, “
Glassy photomechanical liquid-crystal network actuators for microscale devices
,”
Eur. Phys. J. E
23
,
329
336
(
2007
).
37.
H.
Wermter
and
H.
Finkelmann
, “
Liquid crystalline elastomers as artificial muscles
,”
e-Polymers
1
(
1
),
013
(
2001
).
38.
M.
Warner
,
C. D.
Modes
, and
D.
Corbett
, “
Curvature in nematic elastica responding to light and heat
,”
Proc. R. Soc. A
466
,
2975
2989
(
2010
).
39.
D.
Corbett
and
M.
Warner
, “
Bleaching and stimulated recovery of dyes and of photocantilevers
,”
Phys. Rev. E
77
(
5
),
051710
(
2008
).
40.
F.
Serra
and
E.
Terentjev
, “
Nonlinear dynamics of absorption and photo-bleaching of dyes
,”
J. Chem. Phys.
128
(
22
),
224510
(
2008
).
41.
C. L.
Oosten
,
D.
Corbett
,
D.
Davies
,
M.
Warner
,
C. W. M.
Bastiaansen
, and
D. J.
Broer
, “
Bending dynamics and directionality reversal in liquid crystal network photoactuators
,”
Macromoleculesr
41
(
22
),
8592
8596
(
2008
).
42.
A. H.
Gelebart
,
D. J.
Mulder
,
M.
Varga
,
A.
Konya
,
G.
Vantomme
,
E. W.
Meijer
,
R. L. B.
Selinger
, and
D. J.
Broer
, “
Making waves in a photoactive polymer film
,”
Nature
546
,
632
636
(
2017
).

Supplementary Material

You do not currently have access to this content.