The synergy between catalysis and plasma chemistry often enhances the yield of chemical reactions in plasma-driven reactors. In the case of CO2 splitting into CO and O2, no positive synergistic effect was observed in earlier studies with plasma reactors, except for dielectric barrier discharges, that do not have a high yield and a high efficiency. Here, we demonstrate that introducing metal meshes into radio frequency-driven plasma reactors increases the relative reaction yield by 20%–50%, while supported metal oxide catalysts in the same setups have no effect. We attribute this to the double role of the metal mesh, which acts both as a catalyst for direct CO2 dissociation as well as for oxygen recombination.

1.
R. J.
Detz
,
J. N. H.
Reek
, and
B. C. C.
van der Zwaan
,
Energy Environ. Sci.
11
(
7
),
1653
1669
(
2018
).
2.
D.
Hone
,
Sky: Meeting the Goals of the Paris Agreement
(
Shell International B.V.
,
2018
), see https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html.
3.
Y. Y.
Birdja
,
E.
Perez-Gallent
,
M. C.
Figueiredo
,
A. J.
Gottle
,
F.
Calle-Vallejo
, and
M. T. M.
Koper
,
Nat. Energy
4
(
9
),
732
745
(
2019
).
4.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
(
19
),
5805
5863
(
2017
).
5.
M.
Ronda-Lloret
,
G.
Rothenberg
, and
N. R.
Shiju
,
ChemSusChem
12
(
17
),
3896
3914
(
2019
).
6.
A.
Bogaerts
and
E. C.
Neyts
,
ACS Energy Lett.
3
(
4
),
1013
1027
(
2018
).
7.
A.
Bogaerts
,
T.
Kozák
,
K.
van Laer
, and
R.
Snoeckx
,
Faraday Discuss.
183
,
217
232
(
2015
).
8.
X. M.
Tao
,
M. G.
Bai
,
X. A.
Li
,
H. L.
Long
,
S. Y.
Shang
,
Y. X.
Yin
, and
X. Y.
Dai
,
Prog. Energy Combust. Sci.
37
(
2
),
113
124
(
2011
).
9.
W. C.
Chung
and
M. B.
Chang
,
Renew. Sust. Energ. Rev.
62
,
13
31
(
2016
).
10.
L.
Wang
,
Y. H.
Yi
,
C. F.
Wu
,
H. C.
Guo
, and
X.
Tu
,
Angew. Chem., Int. Ed.
56
(
44
),
13679
13683
(
2017
).
11.
E. K.
Gibson
,
C. E.
Stere
,
B.
Curran-McAteer
,
W.
Jones
,
G.
Cibin
,
D.
Gianolio
,
A.
Goguet
,
P. P.
Wells
,
C. R. A.
Catlow
,
P.
Collier
,
P.
Hinde
, and
C.
Hardacre
,
Angew. Chem. Int. Ed.
56
(
32
),
9351
9355
(
2017
).
12.
S. J.
Xu
,
S.
Chansai
,
C.
Stere
,
B.
Inceesungvorn
,
A.
Goguet
,
K.
Wangkawong
,
S. F. R.
Taylor
,
N.
Al-Janabi
,
C.
Hardacre
,
P. A.
Martin
, and
X. L.
Fan
,
Nat. Catal.
2
(
2
),
142
148
(
2019
).
13.
L.
Li
,
H.
Zhang
,
X. D.
Li
,
X. Z.
Kong
,
R. Y.
Xu
,
K.
Tay
, and
X.
Tu
,
J. CO2 Util.
29
,
296
303
(
2019
).
14.
P.
Liu
,
X. S.
Liu
,
J.
Shen
,
Y. X.
Yin
,
T.
Yang
,
Q.
Huang
,
D.
Auerbach
, and
A. W.
Kleiyn
,
Plasma Sci. Technol.
21
(
1
),
4
(
2019
).
15.
X.
Ma
,
S.
Li
,
M.
Ronda-Lloret
,
R.
Chaudhary
,
L.
Lin
,
G.
van Rooij
,
F.
Gallucci
,
G.
Rothenberg
,
N. R.
Shiju
, and
V.
Hessel
,
Plasma Chem. Plasma Process.
39
,
109
124
(
2019
).
16.
D.
Ray
,
D.
Nepak
,
S.
Janampelli
,
P.
Goshal
, and
C.
Subrahmanyam
,
Energy Technol.
7
(
4
),
11
(
2019
).
17.
A. H.
Khoja
,
M.
Tahir
, and
N. A. S.
Amin
,
Energy Convers. Manag.
183
,
529
560
(
2019
).
18.
W.
Bongers
,
H.
Bouwmeester
,
B.
Wolf
,
F.
Peeters
,
S.
Welzel
,
D.
van den Bekerom
,
N.
den Harder
,
A.
Goede
,
M.
Graswinckel
,
P. W.
Groen
,
J.
Kopecki
,
M.
Leins
,
G.
van Rooij
,
A.
Schulz
,
M.
Walker
, and
R.
van de Sanden
,
Plasma Processes Polym.
14
(
6
),
1600126
(
2017
).
19.
G. J.
van Rooij
,
D. C. M.
van den Bekerom
,
N.
den Harder
,
T.
Minea
,
G.
Berden
,
W. A.
Bongers
,
R.
Engeln
,
M. F.
Graswinckel
,
E.
Zoethout
, and
M. C. M.
van de Sandena
,
Faraday Discuss.
183
,
233
248
(
2015
).
20.
L. F.
Spencer
and
A. D.
Gallimore
,
Plasma Sources Sci. Technol.
22
(
1
),
9
(
2013
).
21.
L. F.
Spencer
and
A. D.
Gallimore
,
Plasma Chem. Plasma Process.
31
(
1
),
79
89
(
2011
).
22.
W.
Jin
,
Q.
Huang
,
H.
Xu
, and
A. W.
Kleyn
, in
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry
, edited by
K.
Kolasinsky
and
K.
Wandelt
(
(Elsevier Science Publishers
,
2017
).
23.
E.
Devid
,
M.
Ronda-Lloret
,
D.
Zhang
,
D.
Wang
,
C.-H.
Liang
,
Q.
Huang
,
G.
Rothenberg
,
N. R.
Shiju
, and
A.
Kleyn
,
Chin. J. Chem. Phys.
33
(
2
),
243
251
(
2020
).
24.
E. J.
Devid
,
D.
Zhang
,
D.
Wang
,
M.
Ronda-Lloret
,
Q.
Huang
,
G.
Rothenberg
,
N. R.
Shiju
, and
A.
Kleyn
,
Energy Technol.
8
(
5
),
1900886
(
2020
).
25.
Q.
Huang
,
D. Y.
Zhang
,
D. P.
Wang
,
K. Z.
Liu
, and
A. W.
Kleyn
,
J. Phys. D Appl. Phys.
50
(
29
),
294001
(
2017
).
26.
Z. K.
Li
,
T.
Yang
,
S. J.
Yuan
,
Y. X.
Yin
,
E. J.
Devid
,
Q.
Huang
,
D.
Auerbach
, and
A. W.
Kleyn
,
J. Energy Chem.
45
,
128
134
(
2020
).
27.
R. L.
Yang
,
D. Y.
Zhang
,
K. W.
Zhu
,
H. L.
Zhou
,
X. Q.
Ye
,
A. W.
Kleyn
,
Y.
Hu
, and
Q.
Huang
,
Acta Phys. Chim. Sin.
35
(
3
),
292
298
(
2019
).
28.
D. Y.
Zhang
,
Q.
Huang
,
E. J.
Devid
,
E.
Schuler
,
N. R.
Shiju
,
G.
Rothenberg
,
G.
van Rooij
,
R. L.
Yang
,
K. Z.
Liu
, and
A. W.
Kleyn
,
J. Phys. Chem. C
122
(
34
),
19338
19347
(
2018
).
29.
J.
Shah
,
W. Z.
Wang
,
A.
Bogaerts
, and
M. L.
Carreon
,
ACS Appl. Energy Mater.
1
(
9
),
4824
4839
(
2018
).
30.
H.
Uyama
,
T.
Nakamura
,
S.
Tanaka
, and
O.
Matsumoto
,
Plasma Chem. Plasma Process.
13
(
1
),
117
131
(
1993
).
31.
S.
Tanaka
,
H.
Uyama
, and
O.
Matsumoto
,
Plasma Chem. Plasma Process.
14
(
4
),
491
504
(
1994
).
32.
J.
Shah
,
T.
Wu
,
J.
Lucero
,
M. A.
Carreon
, and
M. L.
Carreon
,
ACS Sustainable Chem. Eng.
7
(
1
),
377
383
(
2019
).
33.
P.
Peng
,
C.
Schiappacasse
,
N.
Zhou
,
M.
Addy
,
Y. L.
Cheng
,
Y. N.
Zhang
,
K.
Ding
,
Y. P.
Wang
,
P.
Chen
, and
R.
Ruan
,
ChemSusChem
12
(
16
),
3702
3712
(
2019
).
34.
H.
Patel
,
R. K.
Sharma
,
V.
Kyriakou
,
A.
Pandiyan
,
S.
Welzel
,
M. C. M.
van de Sanden
, and
M. N.
Tsampas
,
ACS Energy Lett.
4
(
9
),
2091
2095
(
2019
).
35.
M. L.
Carreon
,
J. Phys. D Appl. Phys.
52
(
48
),
483001
(
2019
).
36.
M.
Iwamoto
,
M.
Akiyama
,
K.
Aihara
, and
T.
Deguchi
,
ACS Catal.
7
(
10
),
6924
6929
(
2017
).
37.
K.
Aihara
,
M.
Akiyama
,
T.
Deguchi
,
M.
Tanaka
,
R.
Hagiwara
, and
M.
Iwamoto
,
Chem. Commun.
52
(
93
),
13560
13563
(
2016
).
38.
U.
Burghaus
,
Prog. Surf. Sci.
89
(
2
),
161
217
(
2014
).
39.
U.
Burghaus
,
Catal. Today
148
(
3–4
),
212
220
(
2009
).
40.
I. A.
Bönicke
,
W.
Kirstein
, and
F.
Thieme
,
Surf. Sci.
307–309
,
177
181
(
1994
).
41.
S. S.
Fu
and
G. A.
Somorjai
,
Surf. Sci.
262
(
1–2
),
68
76
(
1992
).
42.
W.
Taifan
,
J. F.
Boily
, and
J.
Baltrusaitis
,
Surf. Sci. Rep.
71
(
4
),
595
671
(
2016
).
43.
H. J.
Freund
and
M. W.
Roberts
,
Surf. Sci. Rep.
25
(
8
),
225
273
(
1996
).
44.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
144
(
9
),
091101
(
2016
).
45.
X. Y.
Zhou
,
B.
Kolb
,
X.
Luo
,
H.
Guo
, and
B.
Jiang
,
J. Phys. Chem. C
121
(
10
),
5594
5602
(
2017
).
46.
A.
Jafarzadeh
,
K. M.
Bal
,
A.
Bogaerts
, and
E. C.
Neyts
,
J. Phys. Chem. C
124
(
12
),
6747
6755
(
2020
).
47.
X.
Duan
,
O.
Warschkow
,
A.
Soon
,
B.
Delley
, and
C.
Stampfl
,
Phys. Rev. B
81
(
7
),
15
(
2010
).
48.
A.
Soon
,
M.
Todorova
,
B.
Delley
, and
C.
Stampfl
,
Phys. Rev. B
73
(
16
),
12
(
2006
).
49.
C.
Gattinoni
and
A.
Michaelides
,
Surf. Sci. Rep.
70
(
3
),
424
447
(
2015
).
50.
M. E.
Turano
,
R. G.
Farber
,
E. C. N.
Oskorep
,
R. A.
Rosenberg
, and
D. R.
Killelea
,
J. Phys. Chem. C
124
(
2
),
1382
1389
(
2020
).
51.
R. G.
Farber
,
M. E.
Turano
,
E. C. N.
Oskorep
,
N. T.
Wands
,
L. B. F.
Juurlink
, and
D. R.
Killelea
,
J. Phys. Condens. Matter
29
(
16
),
164002
(
2017
).
52.
J.
Derouin
,
R. G.
Farber
, and
D. R.
Killelea
,
J. Phys. Chem. C
119
(
26
),
14748
14755
(
2015
).
53.
J.
Derouin
,
R. G.
Farber
,
M. E.
Turano
,
E. V.
Iski
, and
D. R.
Killelea
,
ACS Catal.
6
(
7
),
4640
4646
(
2016
).
54.
J.
Derouin
,
R. G.
Farber
,
S. L.
Heslop
, and
D. R.
Killelea
,
Surf. Sci.
641
,
L1
L4
(
2015
).
55.
J. C.
Yang
,
B.
Kolasa
,
J. M.
Gibson
, and
M.
Yeadon
,
Appl. Phys. Lett.
73
(
19
),
2841
2843
(
1998
).
56.
C. R.
Stilhano Vilas Boas
,
J. M.
Sturm
, and
F.
Bijkerk
,
J. Appl. Phys.
126
(
15
),
155301
(
2019
).
57.
Y. X.
Yao
,
P.
Shushkov
,
T. F.
Miller
, and
K. P.
Giapis
,
Nat. Commun.
10
,
2294
(
2019
).
58.
N.
Madaan
,
R.
Haufe
,
N. R.
Shiju
, and
G.
Rothenberg
,
Top. Catal.
57
(
17–20
),
1400
1406
(
2014
).
59.
Q. Z.
Zhang
and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
27
(
3
),
035009
(
2018
).
60.
Q. Q.
Jiang
,
Z. P.
Chen
,
J. H.
Tong
,
M.
Yang
,
Z. X.
Jiang
, and
C.
Li
,
ACS Catal.
6
(
2
),
1172
1180
(
2016
).
61.
J. S.
Zhang
,
V.
Haribal
, and
F. X.
Li
,
Sci. Adv.
3
(
8
),
e1701184
(
2017
).
62.
M.
Tou
,
R.
Michalsky
, and
A.
Steinfeld
,
Joule
1
(
1
),
146
154
(
2017
).
63.
E.
Taglauer
and
W.
Heiland
,
J. Nucl. Mater.
93–94
,
823
829
(
1980
).
64.
C.
Rond
,
A.
Bultel
,
P.
Boubert
, and
B. G.
Chéron
,
Chem. Phys.
354
(
1–3
),
16
26
(
2008
).
65.
A. W.
Kleyn
,
Chem. Soc. Rev.
32
(
2
),
87
95
(
2003
).
66.
T.
Zaharia
,
A. W.
Kleyn
, and
M. A.
Gleeson
,
Phys. Rev. Lett.
113
(
5
),
053201
(
2014
).
67.
S.
Vollmer
,
G.
Witte
, and
C.
Wöll
,
Catal. Lett.
77
(
1–3
),
97
101
(
2001
).
68.
E. J.
Ras
,
M. J.
Louwerse
,
M. C.
Mittelmeijer-Hazeleger
, and
G.
Rothenberg
,
Phys. Chem. Chem. Phys.
15
(
12
),
4436
4443
(
2013
).

Supplementary Material

You do not currently have access to this content.