The synergy between catalysis and plasma chemistry often enhances the yield of chemical reactions in plasma-driven reactors. In the case of CO2 splitting into CO and O2, no positive synergistic effect was observed in earlier studies with plasma reactors, except for dielectric barrier discharges, that do not have a high yield and a high efficiency. Here, we demonstrate that introducing metal meshes into radio frequency-driven plasma reactors increases the relative reaction yield by 20%–50%, while supported metal oxide catalysts in the same setups have no effect. We attribute this to the double role of the metal mesh, which acts both as a catalyst for direct CO2 dissociation as well as for oxygen recombination.
REFERENCES
1.
R. J.
Detz
, J. N. H.
Reek
, and B. C. C.
van der Zwaan
, Energy Environ. Sci.
11
(7
), 1653
–1669
(2018
). 2.
D.
Hone
, Sky: Meeting the Goals of the Paris Agreement
(Shell International B.V.
, 2018
), see https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html.3.
Y. Y.
Birdja
, E.
Perez-Gallent
, M. C.
Figueiredo
, A. J.
Gottle
, F.
Calle-Vallejo
, and M. T. M.
Koper
, Nat. Energy
4
(9
), 732
–745
(2019
). 4.
R.
Snoeckx
and A.
Bogaerts
, Chem. Soc. Rev.
46
(19
), 5805
–5863
(2017
). 5.
M.
Ronda-Lloret
, G.
Rothenberg
, and N. R.
Shiju
, ChemSusChem
12
(17
), 3896
–3914
(2019
). 6.
A.
Bogaerts
and E. C.
Neyts
, ACS Energy Lett.
3
(4
), 1013
–1027
(2018
). 7.
A.
Bogaerts
, T.
Kozák
, K.
van Laer
, and R.
Snoeckx
, Faraday Discuss.
183
, 217
–232
(2015
). 8.
X. M.
Tao
, M. G.
Bai
, X. A.
Li
, H. L.
Long
, S. Y.
Shang
, Y. X.
Yin
, and X. Y.
Dai
, Prog. Energy Combust. Sci.
37
(2
), 113
–124
(2011
). 9.
W. C.
Chung
and M. B.
Chang
, Renew. Sust. Energ. Rev.
62
, 13
–31
(2016
). 10.
L.
Wang
, Y. H.
Yi
, C. F.
Wu
, H. C.
Guo
, and X.
Tu
, Angew. Chem., Int. Ed.
56
(44
), 13679
–13683
(2017
). 11.
E. K.
Gibson
, C. E.
Stere
, B.
Curran-McAteer
, W.
Jones
, G.
Cibin
, D.
Gianolio
, A.
Goguet
, P. P.
Wells
, C. R. A.
Catlow
, P.
Collier
, P.
Hinde
, and C.
Hardacre
, Angew. Chem. Int. Ed.
56
(32
), 9351
–9355
(2017
). 12.
S. J.
Xu
, S.
Chansai
, C.
Stere
, B.
Inceesungvorn
, A.
Goguet
, K.
Wangkawong
, S. F. R.
Taylor
, N.
Al-Janabi
, C.
Hardacre
, P. A.
Martin
, and X. L.
Fan
, Nat. Catal.
2
(2
), 142
–148
(2019
). 13.
L.
Li
, H.
Zhang
, X. D.
Li
, X. Z.
Kong
, R. Y.
Xu
, K.
Tay
, and X.
Tu
, J. CO2 Util.
29
, 296
–303
(2019
). 14.
P.
Liu
, X. S.
Liu
, J.
Shen
, Y. X.
Yin
, T.
Yang
, Q.
Huang
, D.
Auerbach
, and A. W.
Kleiyn
, Plasma Sci. Technol.
21
(1
), 4
(2019
).15.
X.
Ma
, S.
Li
, M.
Ronda-Lloret
, R.
Chaudhary
, L.
Lin
, G.
van Rooij
, F.
Gallucci
, G.
Rothenberg
, N. R.
Shiju
, and V.
Hessel
, Plasma Chem. Plasma Process.
39
, 109
–124
(2019
). 16.
D.
Ray
, D.
Nepak
, S.
Janampelli
, P.
Goshal
, and C.
Subrahmanyam
, Energy Technol.
7
(4
), 11
(2019
).17.
A. H.
Khoja
, M.
Tahir
, and N. A. S.
Amin
, Energy Convers. Manag.
183
, 529
–560
(2019
). 18.
W.
Bongers
, H.
Bouwmeester
, B.
Wolf
, F.
Peeters
, S.
Welzel
, D.
van den Bekerom
, N.
den Harder
, A.
Goede
, M.
Graswinckel
, P. W.
Groen
, J.
Kopecki
, M.
Leins
, G.
van Rooij
, A.
Schulz
, M.
Walker
, and R.
van de Sanden
, Plasma Processes Polym.
14
(6
), 1600126
(2017
). 19.
G. J.
van Rooij
, D. C. M.
van den Bekerom
, N.
den Harder
, T.
Minea
, G.
Berden
, W. A.
Bongers
, R.
Engeln
, M. F.
Graswinckel
, E.
Zoethout
, and M. C. M.
van de Sandena
, Faraday Discuss.
183
, 233
–248
(2015
). 20.
21.
L. F.
Spencer
and A. D.
Gallimore
, Plasma Chem. Plasma Process.
31
(1
), 79
–89
(2011
). 22.
W.
Jin
, Q.
Huang
, H.
Xu
, and A. W.
Kleyn
, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry
, edited by K.
Kolasinsky
and K.
Wandelt
((Elsevier Science Publishers
, 2017
).23.
E.
Devid
, M.
Ronda-Lloret
, D.
Zhang
, D.
Wang
, C.-H.
Liang
, Q.
Huang
, G.
Rothenberg
, N. R.
Shiju
, and A.
Kleyn
, Chin. J. Chem. Phys.
33
(2
), 243
–251
(2020
). 24.
E. J.
Devid
, D.
Zhang
, D.
Wang
, M.
Ronda-Lloret
, Q.
Huang
, G.
Rothenberg
, N. R.
Shiju
, and A.
Kleyn
, Energy Technol.
8
(5
), 1900886
(2020
). 25.
Q.
Huang
, D. Y.
Zhang
, D. P.
Wang
, K. Z.
Liu
, and A. W.
Kleyn
, J. Phys. D Appl. Phys.
50
(29
), 294001
(2017
). 26.
Z. K.
Li
, T.
Yang
, S. J.
Yuan
, Y. X.
Yin
, E. J.
Devid
, Q.
Huang
, D.
Auerbach
, and A. W.
Kleyn
, J. Energy Chem.
45
, 128
–134
(2020
). 27.
R. L.
Yang
, D. Y.
Zhang
, K. W.
Zhu
, H. L.
Zhou
, X. Q.
Ye
, A. W.
Kleyn
, Y.
Hu
, and Q.
Huang
, Acta Phys. Chim. Sin.
35
(3
), 292
–298
(2019
). 28.
D. Y.
Zhang
, Q.
Huang
, E. J.
Devid
, E.
Schuler
, N. R.
Shiju
, G.
Rothenberg
, G.
van Rooij
, R. L.
Yang
, K. Z.
Liu
, and A. W.
Kleyn
, J. Phys. Chem. C
122
(34
), 19338
–19347
(2018
). 29.
J.
Shah
, W. Z.
Wang
, A.
Bogaerts
, and M. L.
Carreon
, ACS Appl. Energy Mater.
1
(9
), 4824
–4839
(2018
). 30.
H.
Uyama
, T.
Nakamura
, S.
Tanaka
, and O.
Matsumoto
, Plasma Chem. Plasma Process.
13
(1
), 117
–131
(1993
). 31.
S.
Tanaka
, H.
Uyama
, and O.
Matsumoto
, Plasma Chem. Plasma Process.
14
(4
), 491
–504
(1994
). 32.
J.
Shah
, T.
Wu
, J.
Lucero
, M. A.
Carreon
, and M. L.
Carreon
, ACS Sustainable Chem. Eng.
7
(1
), 377
–383
(2019
). 33.
P.
Peng
, C.
Schiappacasse
, N.
Zhou
, M.
Addy
, Y. L.
Cheng
, Y. N.
Zhang
, K.
Ding
, Y. P.
Wang
, P.
Chen
, and R.
Ruan
, ChemSusChem
12
(16
), 3702
–3712
(2019
). 34.
H.
Patel
, R. K.
Sharma
, V.
Kyriakou
, A.
Pandiyan
, S.
Welzel
, M. C. M.
van de Sanden
, and M. N.
Tsampas
, ACS Energy Lett.
4
(9
), 2091
–2095
(2019
). 35.
M. L.
Carreon
, J. Phys. D Appl. Phys.
52
(48
), 483001
(2019
). 36.
M.
Iwamoto
, M.
Akiyama
, K.
Aihara
, and T.
Deguchi
, ACS Catal.
7
(10
), 6924
–6929
(2017
). 37.
K.
Aihara
, M.
Akiyama
, T.
Deguchi
, M.
Tanaka
, R.
Hagiwara
, and M.
Iwamoto
, Chem. Commun.
52
(93
), 13560
–13563
(2016
). 38.
U.
Burghaus
, Prog. Surf. Sci.
89
(2
), 161
–217
(2014
). 39.
U.
Burghaus
, Catal. Today
148
(3–4
), 212
–220
(2009
). 40.
I. A.
Bönicke
, W.
Kirstein
, and F.
Thieme
, Surf. Sci.
307–309
, 177
–181
(1994
). 41.
S. S.
Fu
and G. A.
Somorjai
, Surf. Sci.
262
(1–2
), 68
–76
(1992
). 42.
W.
Taifan
, J. F.
Boily
, and J.
Baltrusaitis
, Surf. Sci. Rep.
71
(4
), 595
–671
(2016
). 43.
H. J.
Freund
and M. W.
Roberts
, Surf. Sci. Rep.
25
(8
), 225
–273
(1996
). 44.
B.
Jiang
and H.
Guo
, J. Chem. Phys.
144
(9
), 091101
(2016
). 45.
X. Y.
Zhou
, B.
Kolb
, X.
Luo
, H.
Guo
, and B.
Jiang
, J. Phys. Chem. C
121
(10
), 5594
–5602
(2017
). 46.
A.
Jafarzadeh
, K. M.
Bal
, A.
Bogaerts
, and E. C.
Neyts
, J. Phys. Chem. C
124
(12
), 6747
–6755
(2020
). 47.
X.
Duan
, O.
Warschkow
, A.
Soon
, B.
Delley
, and C.
Stampfl
, Phys. Rev. B
81
(7
), 15
(2010
). 48.
A.
Soon
, M.
Todorova
, B.
Delley
, and C.
Stampfl
, Phys. Rev. B
73
(16
), 12
(2006
). 49.
C.
Gattinoni
and A.
Michaelides
, Surf. Sci. Rep.
70
(3
), 424
–447
(2015
). 50.
M. E.
Turano
, R. G.
Farber
, E. C. N.
Oskorep
, R. A.
Rosenberg
, and D. R.
Killelea
, J. Phys. Chem. C
124
(2
), 1382
–1389
(2020
). 51.
R. G.
Farber
, M. E.
Turano
, E. C. N.
Oskorep
, N. T.
Wands
, L. B. F.
Juurlink
, and D. R.
Killelea
, J. Phys. Condens. Matter
29
(16
), 164002
(2017
). 52.
J.
Derouin
, R. G.
Farber
, and D. R.
Killelea
, J. Phys. Chem. C
119
(26
), 14748
–14755
(2015
). 53.
J.
Derouin
, R. G.
Farber
, M. E.
Turano
, E. V.
Iski
, and D. R.
Killelea
, ACS Catal.
6
(7
), 4640
–4646
(2016
). 54.
J.
Derouin
, R. G.
Farber
, S. L.
Heslop
, and D. R.
Killelea
, Surf. Sci.
641
, L1
–L4
(2015
). 55.
J. C.
Yang
, B.
Kolasa
, J. M.
Gibson
, and M.
Yeadon
, Appl. Phys. Lett.
73
(19
), 2841
–2843
(1998
). 56.
C. R.
Stilhano Vilas Boas
, J. M.
Sturm
, and F.
Bijkerk
, J. Appl. Phys.
126
(15
), 155301
(2019
). 57.
Y. X.
Yao
, P.
Shushkov
, T. F.
Miller
, and K. P.
Giapis
, Nat. Commun.
10
, 2294
(2019
).58.
N.
Madaan
, R.
Haufe
, N. R.
Shiju
, and G.
Rothenberg
, Top. Catal.
57
(17–20
), 1400
–1406
(2014
). 59.
Q. Z.
Zhang
and A.
Bogaerts
, Plasma Sources Sci. Technol.
27
(3
), 035009
(2018
). 60.
Q. Q.
Jiang
, Z. P.
Chen
, J. H.
Tong
, M.
Yang
, Z. X.
Jiang
, and C.
Li
, ACS Catal.
6
(2
), 1172
–1180
(2016
). 61.
J. S.
Zhang
, V.
Haribal
, and F. X.
Li
, Sci. Adv.
3
(8
), e1701184
(2017
).62.
M.
Tou
, R.
Michalsky
, and A.
Steinfeld
, Joule
1
(1
), 146
–154
(2017
). 63.
E.
Taglauer
and W.
Heiland
, J. Nucl. Mater.
93–94
, 823
–829
(1980
). 64.
C.
Rond
, A.
Bultel
, P.
Boubert
, and B. G.
Chéron
, Chem. Phys.
354
(1–3
), 16
–26
(2008
). 65.
A. W.
Kleyn
, Chem. Soc. Rev.
32
(2
), 87
–95
(2003
). 66.
T.
Zaharia
, A. W.
Kleyn
, and M. A.
Gleeson
, Phys. Rev. Lett.
113
(5
), 053201
(2014
). 67.
S.
Vollmer
, G.
Witte
, and C.
Wöll
, Catal. Lett.
77
(1–3
), 97
–101
(2001
). 68.
E. J.
Ras
, M. J.
Louwerse
, M. C.
Mittelmeijer-Hazeleger
, and G.
Rothenberg
, Phys. Chem. Chem. Phys.
15
(12
), 4436
–4443
(2013
). © 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.