Ferrocene (Fc) is an effective precursor for the direct synthesis of high quality single-walled carbon nanotubes (SWCNTs) via floating catalyst chemical vapor deposition (FCCVD). However, the formation mechanism of the Fe floating catalyst and the SWNCT growth precursors, such as carbon chains, during Fc decomposition are not well understood. Here, we report first principles nonequilibrium quantum chemical molecular dynamics simulations that investigate the decomposition of Fc during FCCVD. We examine the influence of additional growth precursors including ethylene, methane, CO, and CO2 on the Fc decomposition mechanism and show that the dissociation of these species into C2Hx radicals and C atoms provides the key growth agents for the nucleation of carbon chains from Fc-derived species such as cyclopentadienyl rings. Without an additional growth precursor, Fc decomposes via the spontaneous cleavage of Fe–C and C–H bonds, thereby enabling Fe atoms to cluster and form the floating catalyst. On the basis of these simulations, we detail the two competing chemical pathways present during the initial stages of FCCVD: Fe catalyst nanoparticle growth and carbon chain growth. The latter is accelerated in the presence of the additional growth precursors, with the identity of the precursor determining the nature of the balance between these competing pathways.

1.
S.
Iijima
and
T.
Ichihashi
, “
Single-shell carbon nanotubes of 1-nm diameter
,”
Nature
363
,
603
605
(
1993
).
2.
D. S.
Bethune
,
C. H.
Kiang
,
M. S.
de Vries
,
G.
Gorman
,
R.
Savoy
,
J.
Vazquez
, and
R.
Beyers
, “
Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls
,”
Nature
363
,
605
607
(
1993
).
3.
P. G.
Collins
,
M. S.
Arnold
, and
P.
Avouris
, “
Engineering carbon nanotubes and nanotube circuits using electrical breakdown
,”
Science
292
,
706
(
2001
).
4.
M. F. L.
De Volder
,
S. H.
Tawfick
,
R. H.
Baughman
, and
A. J.
Hart
, “
Carbon nanotubes: Present and future commercial applications
,”
Science
339
,
535
(
2013
).
5.
W.
Liang
,
M.
Bockrath
,
D.
Bozovic
,
J. H.
Hafner
,
M.
Tinkham
, and
H.
Park
, “
Fabry–Pérot interference in a nanotube electron waveguide
,”
Nature
411
,
665
669
(
2001
).
6.
B.
Peng
,
M.
Locascio
,
P.
Zapol
,
S.
Li
,
S. L.
Mielke
,
G. C.
Schatz
, and
H. D.
Espinosa
, “
Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements
,”
Nat. Nanotechnol.
3
,
626
631
(
2008
).
7.
D.-m.
Sun
,
M. Y.
Timmermans
,
Y.
Tian
,
A. G.
Nasibulin
,
E. I.
Kauppinen
,
S.
Kishimoto
,
T.
Mizutani
, and
Y.
Ohno
, “
Flexible high-performance carbon nanotube integrated circuits
,”
Nat. Nanotechnol.
6
,
156
161
(
2011
).
8.
Z.
Wu
 et al, “
Transparent, conductive carbon nanotube films
,”
Science
305
,
1273
(
2004
).
9.
R.
Rao
 et al, “
Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications
,”
ACS Nano
12
,
11756
11784
(
2018
).
10.
A.
Kaskela
 et al, “
Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique
,”
Nano Lett.
10
,
4349
4355
(
2010
).
11.
L.
Hu
,
D. S.
Hecht
, and
G.
Grüner
, “
Carbon nanotube thin films: Fabrication, properties, and applications
,”
Chem. Rev.
110
,
5790
5844
(
2010
).
12.
L.
Yu
,
C.
Shearer
, and
J.
Shapter
, “
Recent development of carbon nanotube transparent conductive films
,”
Chem. Rev.
116
,
13413
13453
(
2016
).
13.
F.
Mirri
,
A. W. K.
Ma
,
T. T.
Hsu
,
N.
Behabtu
,
S. L.
Eichmann
,
C. C.
Young
,
D. E.
Tsentalovich
, and
M.
Pasquali
, “
High-performance carbon nanotube transparent conductive films by scalable dip coating
,”
ACS Nano
6
,
9737
9744
(
2012
).
14.
E.-X.
Ding
,
H.
Jiang
,
Q.
Zhang
,
Y.
Tian
,
P.
Laiho
,
A.
Hussain
,
Y.
Liao
,
N.
Wei
, and
E. I.
Kauppinen
, “
Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition
,”
Nanoscale
9
,
17601
17609
(
2017
).
15.
A.
Kaskela
,
P.
Laiho
,
N.
Fukaya
,
K.
Mustonen
,
T.
Susi
,
H.
Jiang
,
N.
Houbenov
,
Y.
Ohno
, and
E. I.
Kauppinen
, “
Highly individual SWCNTs for high performance thin film electronics
,”
Carbon
103
,
228
234
(
2016
).
16.
O.
Guellati
,
D.
Bégin
,
F.
Antoni
,
S.
Moldovan
,
M.
Guerioune
,
C.
Pham-Huu
, and
I.
Janowska
, “
CNTs’ array growth using the floating catalyst-CVD method over different substrates and varying hydrogen supply
,”
Mater. Sci. Eng. B
231
,
11
17
(
2018
).
17.
A. G.
Nasibulin
 et al, “
Multifunctional free-standing single-walled carbon nanotube films
,”
ACS Nano
5
,
3214
3221
(
2011
).
18.
K.
Mustonen
 et al, “
Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities
,”
Appl. Phys. Lett.
107
,
013106
(
2015
).
19.
R.
Bhowmick
,
B.
Clemens
, and
B.
Cruden
, “
Parametric analysis of chirality families and diameter distributions in single-wall carbon nanotube production by the floating catalyst method
,”
Carbon
46
,
907
922
(
2008
).
20.
Y.-L.
Li
,
I. A.
Kinloch
, and
A. H.
Windle
, “
Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis
,”
Science
304
,
276
(
2004
).
21.
S.
Maruyama
,
R.
Kojima
,
Y.
Miyauchi
,
S.
Chiashi
, and
M.
Kohno
, “
Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol
,”
Chem. Phys. Lett.
360
,
229
234
(
2002
).
22.
P.-X.
Hou
,
W.-S.
Li
,
S.-Y.
Zhao
,
G.-X.
Li
,
C.
Shi
,
C.
Liu
, and
H.-M.
Cheng
, “
Preparation of metallic single-wall carbon nanotubes by selective etching
,”
ACS Nano
8
,
7156
7162
(
2014
).
23.
B.
Yu
,
C.
Liu
,
P.-X.
Hou
,
Y.
Tian
,
S.
Li
,
B.
Liu
,
F.
Li
,
E. I.
Kauppinen
, and
H.-M.
Cheng
, “
Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition
,”
J. Am. Chem. Soc.
133
,
5232
5235
(
2011
).
24.
A.
Hussain
,
Y.
Liao
,
Q.
Zhang
,
E.-X.
Ding
,
P.
Laiho
,
S.
Ahmad
,
N.
Wei
,
Y.
Tian
,
H.
Jiang
, and
E. I.
Kauppinen
, “
Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes
,”
Nanoscale
10
,
9752
9759
(
2018
).
25.
B.
Alemán
and
J. J.
Vilatela
, “
Molecular characterization of macroscopic aerogels of single-walled carbon nanotubes
,”
Carbon
149
,
512
518
(
2019
).
26.
L.
Weller
,
F. R.
Smail
,
J. A.
Elliott
,
A. H.
Windle
,
A. M.
Boies
, and
S.
Hochgreb
, “
Mapping the parameter space for direct-spun carbon nanotube aerogels
,”
Carbon
146
,
789
812
(
2019
).
27.
V.
Reguero
,
B.
Alemán
,
B.
Mas
, and
J. J.
Vilatela
, “
Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process
,”
Chem. Mater.
26
,
3550
3557
(
2014
).
28.
Q. N.
Pham
,
L. S.
Larkin
,
C. C.
Lisboa
,
C. B.
Saltonstall
,
L.
Qiu
,
J. D.
Schuler
,
T. J.
Rupert
, and
P. M.
Norris
, “
Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications
,”
Phys. Status Solidi A
214
,
1600852
(
2017
).
29.
R.
Bhatia
and
V.
Prasad
, “
Synthesis of multiwall carbon nanotubes by chemical vapor deposition of ferrocene alone
,”
Solid State Commun.
150
,
311
315
(
2010
).
30.
H.
Qiu
,
Z.
Shi
,
Z.
Gu
, and
J.
Qiu
, “
Controllable preparation of triple-walled carbon nanotubes and their growth mechanism
,”
Chem. Commun.
2007
,
1092
1094
.
31.
S.
Ahmad
,
Y.
Liao
,
A.
Hussain
,
Q.
Zhang
,
E.-X.
Ding
,
H.
Jiang
, and
E. I.
Kauppinen
, “
Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD
,”
Carbon
149
,
318
327
(
2019
).
32.
B.
McLean
,
C. A.
Eveleens
,
I.
Mitchell
,
G. B.
Webber
, and
A. J.
Page
, “
Catalytic CVD synthesis of boron nitride and carbon nanomaterials—Synergies between experiment and theory
,”
Phys. Chem. Chem. Phys.
19
,
26466
26494
(
2017
).
33.
H.
Amara
and
C.
Bichara
, “
Modeling the growth of single-wall carbon nanotubes
,”
Top. Curr. Chem.
375
,
55
(
2017
).
34.
E. S.
Penev
,
F.
Ding
, and
B. I.
Yakobson
, “
Mechanisms and theoretical simulations of the catalytic growth of nanocarbons
,”
MRS Bull.
42
,
794
801
(
2017
).
35.
A. J.
Page
,
F.
Ding
,
S.
Irle
, and
K.
Morokuma
, “
Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: A review
,”
Rep. Prog. Phys.
78
,
036501
(
2015
).
36.
R.
Rao
,
R.
Sharma
,
F.
Abild-Pedersen
,
J. K.
Nørskov
, and
A. R.
Harutyunyan
, “
Insights into carbon nanotube nucleation: Cap formation governed by catalyst interfacial step flow
,”
Sci. Rep.
4
,
6510
(
2014
).
37.
E.
Pigos
,
E. S.
Penev
,
M. A.
Ribas
,
R.
Sharma
,
B. I.
Yakobson
, and
A. R.
Harutyunyan
, “
Carbon nanotube nucleation driven by catalyst morphology dynamics
,”
ACS Nano
5
,
10096
10101
(
2011
).
38.
Y.
Ohta
,
Y.
Okamoto
,
A. J.
Page
,
S.
Irle
, and
K.
Morokuma
, “
Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle
,”
ACS Nano
3
,
3413
3420
(
2009
).
39.
A. J.
Page
,
Y.
Ohta
,
S.
Irle
, and
K.
Morokuma
, “
Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using Qm/Md methods
,”
Acc. Chem. Res.
43
,
1375
1385
(
2010
).
40.
A. J.
Page
,
H.
Yamane
,
Y.
Ohta
,
S.
Irle
, and
K.
Morokuma
, “
Qm/Md simulation of SWNT nucleation on transition-metal carbide nanoparticles
,”
J. Am. Chem. Soc.
132
,
15699
15707
(
2010
).
41.
H.
Dai
,
A. G.
Rinzler
,
P.
Nikolaev
,
A.
Thess
,
D. T.
Colbert
, and
R. E.
Smalley
, “
Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide
,”
Chem. Phys. Lett.
260
,
471
475
(
1996
).
42.
A. J.
Page
,
Y.
Ohta
,
Y.
Okamoto
,
S.
Irle
, and
K.
Morokuma
, “
Defect healing during single-walled carbon nanotube growth: A density-functional tight-binding molecular dynamics investigation
,”
J. Phys. Chem. C
113
,
20198
20207
(
2009
).
43.
S.
Ahmad
,
E.-X.
Ding
,
Q.
Zhang
,
H.
Jiang
,
J.
Sainio
,
M.
Tavakkoli
,
A.
Hussain
,
Y.
Liao
, and
E. I.
Kauppinen
, “
Roles of sulfur in floating-catalyst CVD growth of single-walled carbon nanotubes for transparent conductive film applications
,”
Chem. Eng. J.
378
,
122010
(
2019
).
44.
A.
Hussain
,
E.-X.
Ding
,
B.
McLean
,
K.
Mustonen
,
S.
Ahmad
,
M.
Tavakkoli
,
A. J.
Page
,
Q.
Zhang
,
J.
Kotakoski
, and
E. I.
Kauppinen
, “
Scalable growth of single-walled carbon nanotubes with a highly uniform structure
,”
Nanoscale
12
,
12263
12267
(
2020
).
45.
Y.
Wang
,
X.
Gao
,
H.-J.
Qian
,
Y.
Ohta
,
X.
Wu
,
G.
Eres
,
K.
Morokuma
, and
S.
Irle
, “
Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes
,”
Carbon
72
,
22
37
(
2014
).
46.
C. A.
Eveleens
and
A. J.
Page
, “
Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms
,”
Nanoscale
9
,
1727
1737
(
2017
).
47.
C. A.
Eveleens
,
S.
Irle
, and
A. J.
Page
, “
How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?
,”
Carbon
146
,
535
541
(
2018
).
48.
I.
Mitchell
and
A. J.
Page
, “
The influence of hydrogen on transition metal-catalysed graphene nucleation
,”
Carbon
128
,
215
223
(
2018
).
49.
C. A.
Eveleens
and
A. J.
Page
, “
Catalyst- and etchant-dependent mechanisms of single-walled carbon nanotube nucleation during chemical vapor deposition
,”
J. Phys. Chem. C
123
,
10622
10629
(
2019
).
50.
U.
Khalilov
,
A.
Bogaerts
, and
E. C.
Neyts
, “
Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors
,”
Nat. Commun.
6
,
1
7
(
2015
).
51.
S.
Fukuhara
,
M.
Misawa
,
F.
Shimojo
, and
Y.
Shibuta
, “
Ab initio molecular dynamics simulation of ethanol dissociation reactions on alloy catalysts in carbon nanotube growth
,”
Chem. Phys. Lett.
731
,
136619
(
2019
).
52.
Y.
Wang
,
W.
Song
,
M.
Jiao
,
Z.
Wu
, and
S.
Irle
, “
Importance of oxygen in single-walled carbon nanotube growth: Insights from Qm/Md simulations
,”
Carbon
121
,
292
300
(
2017
).
53.
S.
Ahmad
,
P.
Laiho
,
Q.
Zhang
,
H.
Jiang
,
A.
Hussain
,
Y.
Liao
,
E.-X.
Ding
,
N.
Wei
, and
E. I.
Kauppinen
, “
Gas phase synthesis of metallic and bimetallic catalyst nanoparticles by rod-to-tube type spark discharge generator
,”
J. Aerosol Sci.
123
,
208
218
(
2018
).
54.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
7268
(
1998
).
55.
G.
Zheng
 et al, “
Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method:  Sc, Ti, Fe, Co, and Ni
,”
J. Chem. Theory Comput.
3
,
1349
1367
(
2007
).
56.
M.
Weinert
and
J. W.
Davenport
, “
Fractional occupations and density-functional energies and forces
,”
Phys. Rev. B
45
,
13709
13712
(
1992
).
57.
R. M.
Wentzcovitch
,
J. L.
Martins
, and
P. B.
Allen
, “
Energy versus free-energy conservation in first-principles molecular dynamics
,”
Phys. Rev. B
45
,
11372
11374
(
1992
).
58.
F.
Wagner
,
T.
Laloyaux
, and
M.
Scheffler
, “
Errors in Hellmann-Feynman forces due to occupation-number broadening and how they can be corrected
,”
Phys. Rev. B
57
,
2102
2107
(
1998
).
59.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
60.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
61.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
62.
B.
Hourahine
 et al, “
DFTB plus: A software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
63.
S.
Irle
,
G. S.
Zheng
,
Z.
Wang
, and
K.
Morokuma
, “
The C−60 formation puzzle ‘solved:’ Qm/Md simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism
,”
J. Phys. Chem. B
110
, 2006,
14531
14545
.
64.
Y.
Wang
,
A. J.
Page
,
Y.
Nishimoto
,
H.-J.
Qian
,
K.
Morokuma
, and
S.
Irle
, “
Template effect in the competition between haeckelite and graphene growth on Ni(111): Quantum chemical molecular dynamics simulations
,”
J. Am. Chem. Soc.
133
,
18837
18842
(
2011
).
65.
Y.
Wang
,
X. F.
Gao
,
H. J.
Qian
,
Y.
Ohta
,
X. N.
Wu
,
G.
Eres
,
K.
Morokuma
, and
S.
Irle
, “
Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes
,”
Carbon
72
,
22
37
(
2014
).
66.
K.
Elihn
and
K.
Larsson
, “
A theoretical study of the thermal fragmentation of ferrocene
,”
Thin Solid Films
458
,
325
329
(
2004
).
67.
R.
Xiang
,
E.
Einarsson
,
J.
Okawa
,
Y.
Miyauchi
, and
S.
Maruyama
, “
Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes
,”
J. Phys. Chem. C
113
,
7511
7515
(
2009
).
68.
A.
Shibuya
,
G.
Chen
,
A.
Miyoshi
, and
D. N.
Futaba
, “
Improving the synthetic efficiency of single-wall carbon nanotube forests using a Gas-analysis-designed mixed carbon feedstock
,”
Carbon
170
,
59
65
(
2020
).
69.
S.
Ahmad
 et al., “
Hybrid low-dimensional carbon allotropes formed in gas phase
,”
Adv. Funct. Mater.
30
,
2005016
(
2020
).
70.
A. G.
Nasibulin
,
D. P.
Brown
,
P.
Queipo
,
D.
Gonzalez
,
H.
Jiang
, and
E. I.
Kauppinen
, “
An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide
,”
Chem. Phys. Lett.
417
,
179
184
(
2006
).

Supplementary Material

You do not currently have access to this content.