This work exhibits anionic sodium dodecyl sulfate (SDS), nonionic triblock copolymer F127, and polyaniline (PANI) nanostructures. The nanorod shaped PANI-SDS-F127 1:1 demonstrates noteworthy features—scalable and extended electrical characteristics, dielectric response, and significance in high-density energy storage devices. High-frequency measurements (1 MHz–1 GHz) preserve dielectric relaxation, which is attributed to excellent charge polarization. Uniformly distributed PANI nanorods align with the induced electric field and develop high current density (J ∼ 5.270 × 105 mA m–2), electric displacement (Dmax ∼ 7.408 × 105 C m–2), and lower impedance (Zs ∼ 3.28 Ω), which result in an improved charge polarization leading to increased capacitance (Cs ∼ 6.21 μF). These properties yield notable energy density (Ue ∼ 1.08 J cm–3) and signify a polymer matrix viable to high-density energy storage capacitor devices that would be actively favorable in developing efficient electronic and electrical devices.

1.
Q.
Li
,
F.
Liu
,
T.
Yang
,
M. R.
Gadinski
,
G.
Zhang
,
L.-Q.
Chen
, and
Q.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
9995
(
2016
).
2.
M.
Rabuffi
and
G.
Picci
,
IEEE Trans. Plasma Sci.
30
,
1939
(
2002
).
3.
H.
Luo
,
J.
Roscow
,
X.
Zhou
,
S.
Chen
,
X.
Han
,
K.
Zhou
,
D.
Zhang
, and
C. R.
Bowen
,
J. Mater. Chem. A
5
,
7091
(
2017
).
4.
J. Y.
Li
,
L.
Zhang
, and
S.
Ducharme
,
Appl. Phys. Lett.
90
,
132901
(
2007
).
5.
B.
Chu
,
X.
Zhou
,
K.
Ren
,
B.
Neese
,
M.
Lin
,
Q.
Wang
,
F.
Bauer
, and
Q. M.
Zhang
,
Science
313
,
334
(
2006
).
6.
H.
Tang
,
Y.
Lin
, and
H. A.
Sodano
,
Adv. Energy Mater.
2
,
469
(
2012
).
7.
L.
Xie
,
X.
Huang
,
K.
Yang
,
S.
Li
, and
P.
Jiang
,
J. Mater. Chem. A
2
,
5244
(
2014
).
8.
T. D.
Huan
,
S.
Boggs
,
G.
Teyssedre
,
C.
Laurent
,
M.
Cakmak
,
S.
Kumar
, and
R.
Ramprasad
,
Prog. Mater. Sci.
83
,
236
(
2016
).
9.
B.
Fan
,
M.
Zhou
,
C.
Zhang
,
D.
He
, and
J.
Bai
,
Prog. Polym. Sci.
97
,
101143
(
2019
).
10.
C.
Huang
,
Q. M.
Zhang
,
J. Y.
Li
, and
M.
Rabeony
,
Appl. Phys. Lett.
87
,
182901
(
2005
).
11.
D. K.
Das-Gupta
and
K.
Doughty
,
Thin Solid Films
158
,
93
(
1988
).
12.
H.
Luo
,
C.
Chen
,
K.
Zhou
,
X.
Zhou
,
Z.
Wu
, and
D.
Zhang
,
RSC Adv.
5
,
68515
(
2015
).
13.
W. J.
Sarjeant
,
J.
Zirnheld
,
F. W.
MacDougall
,
J. S.
Bowers
,
N.
Clark
,
I. W.
Clelland
,
R. A.
Price
,
M.
Hudis
,
I.
Kohlberg
,
G.
McDuff
,
I.
McNab
,
S. G.
Parler
, and
J.
Prymak
, in
Handbook of Low and High Dielectric Constant Materials and Their Applications
, edited by
H.
Singh Nalwa
(
Academic Press
,
Burlington
,
1999
), pp.
423
491
.
14.
S.
Palsaniya
,
H. B.
Nemade
, and
A. K.
Dasmahapatra
,
J. Energy Storage
32
,
101821
(
2020
).
15.
Z.-M.
Dang
,
Dielectric Polymer Materials for High-Density Energy Storage
(
William Andrew
,
2018
).
16.
S.-L.
Zhong
and
Z.-M.
Dang
, in
Dielectric Polymer Materials for High-Density Energy Storage
, edited by
Z.-M.
Dang
(
William Andrew Publishing
,
2018
), pp.
165
197
.
17.
S.
Yao
and
J.
Yuan
, in
Dielectric Polymer Materials for High-Density Energy Storage
, edited by
Z.-M.
Dang
(
William Andrew Publishing
,
2018
), pp.
323
349
.
18.
S.
Wang
,
X.
Huang
,
G.
Wang
,
Y.
Wang
,
J.
He
, and
P.
Jiang
,
J. Phys. Chem. C
119
,
25307
(
2015
).
19.
S.
Palsaniya
,
H. B.
Nemade
, and
A. K.
Dasmahapatra
,
J. Phys. Chem. C
123
,
27959
(
2019
).
20.
M.
Li
,
X.
Huang
,
C.
Wu
,
H.
Xu
,
P.
Jiang
, and
T.
Tanaka
,
J. Mater. Chem.
22
,
23477
(
2012
).
21.
S.
Palsaniya
,
H. B.
Nemade
, and
A. K.
Dasmahapatra
,
ACS Appl. Polym. Mater.
1
,
647
(
2019
).
22.
L.
Yang
,
W.
Wu
,
Y.
Ohki
,
Y.
Feng
, and
S.
Li
,
J. Appl. Polym. Sci.
134
,
45547
(
2017
).
23.
S.
Palsaniya
,
H. B.
Nemade
, and
A. K.
Dasmahapatra
,
Polymer
150
,
150
(
2018
).
24.
J.
Stejskal
and
R. G.
Gilbert
,
Pure Appl. Chem.
74
,
857
(
2002
).
25.
B.-J.
Kim
,
S.-G.
Oh
,
M.-G.
Han
, and
S.-S.
Im
,
Langmuir
16
,
5841
(
2000
).
26.
J.
Tahalyani
,
K. K.
Rahangdale
, and
B.
Kandasubramanian
,
RSC Adv.
6
,
69733
(
2016
).
27.
A. K.
Das
,
S.
Maiti
, and
B. B.
Khatua
,
J. Electroanal. Chem.
739
,
10
(
2015
).
29.
M. U.
Anu Prathap
,
B.
Thakur
,
S. N.
Sawant
, and
R.
Srivastava
,
Colloids Surf. B Biointerfaces
89
,
108
(
2012
).
30.
M. D. A.
Khan
,
A.
Akhtar
, and
S. A.
Nabi
,
New J. Chem.
39
,
3728
(
2015
).
31.
Q.
Zhang
,
K.
Zhang
,
D.
Xu
,
G.
Yang
,
H.
Huang
,
F.
Nie
,
C.
Liu
, and
S.
Yang
,
Prog. Mater. Sci.
60
,
208
(
2014
).
32.
Y.
Wang
,
W.
Tang
,
J.
Liu
, and
L.
Zhang
,
Appl. Phys. Lett.
106
,
162101
(
2015
).
33.
K.
Gelderman
,
L.
Lee
, and
S. W.
Donne
,
J. Chem. Educ.
84
,
685
(
2007
).
34.
S.
Palsaniya
,
H. B.
Nemade
, and
A. K.
Dasmahapatra
,
Carbon
150
,
179
(
2019
).
35.
L.
He
and
S. C.
Tjong
,
RSC Adv.
5
,
38452
(
2015
).
36.
M. M.
El-Samanoudy
,
J. Phys. Condens. Matter
14
,
1199
(
2002
).
37.
J.
Liu
,
C.-G.
Duan
,
W.-G.
Yin
,
W. N.
Mei
,
R. W.
Smith
, and
J. R.
Hardy
,
J. Chem. Phys.
119
,
2812
(
2003
).
38.
M.
Belal Hossen
and
A. K. M.
Akther Hossain
,
J. Adv. Ceram.
4
,
217
(
2015
).
39.
M.-S.
Cao
,
W.-L.
Song
,
Z.-L.
Hou
,
B.
Wen
, and
J.
Yuan
,
Carbon
48
,
788
(
2010
).
40.
S. K.
Barik
,
P. K.
Mahapatra
, and
R. N. P.
Choudhary
,
Appl. Phys. A
85
,
199
(
2006
).
41.
S.
Liu
,
B.
Shen
,
H.
Hao
, and
J.
Zhai
,
J. Mater. Chem. C
7
,
15118
(
2019
).
42.
R.
Xu
,
Z.
Xu
,
Y.
Feng
,
X.
Wei
,
J.
Tian
, and
D.
Huang
,
J. Appl. Phys.
119
,
224103
(
2016
).
43.
H.
Tang
and
H. A.
Sodano
,
Appl. Phys. Lett.
102
,
063901
(
2013
).
44.
P. R.
Agarwal
,
R.
Kumar
,
S.
Kumari
, and
S. R.
Dhakate
,
RSC Adv.
6
,
100713
(
2016
).
You do not currently have access to this content.