We describe the functional capabilities of the time-resolved photothermal common-pass interferometry method. For two thermo-optical effect-based methods, photothermal common-pass interferometry and time-resolved photothermal common-pass interferometry, the achieved detection limit for absorption measurements in ultrapure quartz glasses (5 × 10−7 cm−1 and 2 × 10−9 cm−1, respectively) is given. The problem of calculating the variation of the refractive index tensor under local heating trigonal-symmetric crystals of class 32 by a focused laser beam is considered. For these crystals, it is shown that the problem of the influence of deformations on the measured signal is reduced to determine a thermo-optical parameter (an analog of dn/dT). The calculation of this parameter does not require a complete solution to the strain problem when the crystals are heated locally by laser radiation. The formulas for calculating the thermo-optical parameter P and its numerical values are presented. They are required to calibrate absorption measurements in crystalline quartz using the time-resolved photothermal common-pass interferometry scheme. For a full understanding, formulas of the theory of equilibrium deformations used in this study are presented. An analysis of the relevance of improving the thermo-optical method sensitivity for concentration measurements of pollutant inclusions in crystals, ultrapure quartz glasses, and ambient air is presented.

1.
F. N�g, M. Stamminger, B. Kühn, M. Altwein, and R. Takke,
ICOL
(March 2014).
2.
R. A.
Cruz
,
A.
Marcano
,
C.
Jacinto
, and
T.
Catunda
,
Opt. Lett.
34
(
12
),
1882
(
2009
).
3.
Cristal Laser
, see https://www.cristal-laser.com/products/non-linear-optics/lbo-crystal.html for information about LBO crystal main features for its use for high-power CW laser applications (accessed 22 December 2020).
4.
N. F.
Andreev
,
K. V.
Vlasova
,
V. S.
Davydov
,
S. M.
Kulikov
,
A. I.
Makarov
,
S. A.
Sukharev
,
G. I.
Freidman
, and
S. V.
Shubin
,
Quantum Electron.
42
,
887
(
2012
).
5.
K. V.
Vlasova
,
A. N.
Konovalov
,
A. I.
Makarov
,
N. F.
Andreev
,
I. E.
Kozhevatov
, and
D. E.
Silin
,
Radiophys. Quantum Electron.
62
,
439
(
2019
).
6.
A.
Alexandrovski
,
A. S.
Markosyan
,
H.
Cai
, and
M. M.
Fejer
,
Proc. SPIE
10447
,
104471D
(
2017
).
7.
R. D.
Snook
and
R. D.
Lowe
,
Analyst
120
,
2051
(
1995
).
8.
Ohara
, see https://oharacorp.com/pdf/SK1310.pdf for information about content of inclusions in SK1310 glass (accessed 22 December 2020).
9.
J. S.
Becker
and
D.
Tenzler
,
Fresenius J. Anal. Chem.
370
,
637
(
2001
).
10.
K.
Dash
,
S.
Thangavel
,
S. M.
Dhavile
,
K.
Chandrasekaran
, and
S. C.
Chaurasia
,
Atom. Spectrosc.
24
,
143
(
2003
).
11.
G.
Stokkan
,
D. S.
Marisa
,
R.
Søndenå
,
M.
Juel
,
A.
Autruffe
,
K.
Adamczyk
,
H. V.
Skarstad
,
K. E.
Ekstrøm
,
M. S.
Wiig
,
C. C.
You
,
H.
Haug
, and
M.
M‘Hamdi
,
Phys. Status Solidi A
214
,
1700319
(
2017
).
12.
R.
Kvande
,
L.
Arnberg
, and
C.
Martin
,
J. Cryst. Growth
311
,
765
(
2009
).
13.
K. V.
Vlasova
,
A. I.
Makarov
,
N. F.
Andreev
, and
A. Y.
Konstantinov
,
Appl. Opt.
57
,
6318
(
2018
).
14.
C.
Wang
and
P.
Sahay
,
Sensors
9
,
8230
(
2009
).
15.
J.
Wojtas
,
Z.
Bielecki
,
T.
Stacewicz
,
J.
Mikolajczyk
, and
M.
Nowakowski
,
Opto-Electron. Rev.
20
,
26
(
2012
).
16.
Heraeus Data Sheet, see https://www.findlight.net/optics/optical-materials/optical-glass/suprasil-3001-material-grades-for-the-infrared-spectrum for information about absorption measurement in Suprasil 3001/3002/300 (accessed 22 December 2020).
17.
A.
Alexandrovski
,
M.
Fejer
,
A.
Markosian
, and
R.
Route
,
Proc. SPIE
7193
,
71930D
(
2009
).
18.
M.
Leidinger
,
S.
Fieberg
,
N.
Waasem
,
F.
Kühnemann
,
K.
Buse
, and
I.
Breunig
,
Opt. Express
23
,
21690
(
2015
).
19.
C.
Mühlig
,
A.
Bochmann
,
W.
Triebel
, and
S.
Kufert
,
Proc. SPIE
7132
,
71320R
(
2008
).
20.
A.
Alexandrovski
,
M.
Fejer
, and
R.
Route
, see https://www.stan-pts.com/G000242-00.pdf for information about mutual arrangement of the pump and probe beams in the PCI scheme (accessed 22 December 2020).
21.
A.
Marcano
,
H.
Cabrera
,
M.
Guerra
,
R. A.
Cruz
,
C.
Jacinto
, and
T.
Catunda
,
J. Opt. Soc. Am. B
23
,
1408
(
2006
).
22.
M. L.
Baesso
,
J.
Shen
, and
R. D.
Snook
,
Chem. Phys. Lett.
197
,
255
(
1992
).
23.
K.
Vlasova
,
A.
Makarov
,
N.
Andreev
, and
A.
Konovalov
,
Sens. Transducers
233
,
6
(
2019
).
24.
Heraeus
, see https://www.findlight.net/front-media/products/datasheet/Suprasil-UVL-.pdf for Heraeus glasses datasheet (accessed 22 December 2020).
25.
J.
Shen
,
R. D.
Lowe
, and
R. D.
Snook
,
Chem. Phys.
165
,
385
(
1992
).
26.
K. V.
Vlasova
,
N. F.
Andreev
,
A. I.
Makarov
, and
A. Y.
Konstantinov
,
Uspekhi Prikladnoi Fiziki (Adv. Appl. Phys.)
5
,
313
(
2017
).
27.
UdSSR-DDR
,
Optisches Glas
(
VEB Jenaer Glaswerk Schott&Gen
,
1978
) (in German).
28.
S. P.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
(
McGraw-Hill
,
1951
).
29.
P.
Kloceck
,
Handbook of Infrared Optical Materials
(
Marcel Dekker
,
New York
,
1991
), p.
632
.
30.
È. K.
Maldutis
,
Y. L.
Reksnis
, and
S. V.
Sakalauskas
,
Sov. J. Quantum Electron.
5
,
1358
(
1975
).
31.
J. F.
Nye
,
Physical Properties of Crystals
(
Clarendon
,
1985
).
32.
A. D.
Kovalenko
,
Thermoelasticity, Basic Theory and Applications
(
Wolters-Noordhoff
,
Groningen
,
1969
).
33.
L. C.
Malacarne
,
N. G. C.
Astrath
, and
M. L.
Baesso
,
J. Opt. Soc. Am. B
29
,
1772
(
2012
).
34.
A. H.
Nayfeh
,
Perturbation Methods
(
Wiley
,
NY
,
1973
).
35.
T.
Berthoud
,
N.
Delorme
, and
P.
Mauchien
,
Anal. Chem.
57
,
1216
(
1985
).
36.
M.
Madou
,
Fundamentals of Microfabrication and Nanotechnology
, 3rd ed. (
CRC
,
Boca Raton, FL
,
2009
).
37.
P.
Heyliger
,
H.
Ledbetter
, and
S.
Kim
,
J. Acoust. Soc. Am.
114
,
644
(
2003
).
38.
T. S.
Narasimhamurty
,
J. Opt. Soc. Am.
59
,
682
(
1969
).
39.
A. I.
Erokhin
,
N. V.
Morachevski
, and
F. S.
Faizullov
,
Quantum Electron.
8
(
5
),
638
(
1978
).
40.
G. M.
Zverev
,
E. A.
Levchuk
,
E. K.
Maldutis
, and
V. A.
Pashkov
,
Sov. JETP Lett.
11
,
108
(
1970
).
41.
R. M.
Waxler
and
C. E.
Weir
,
J. Res. Natl. Bur. Stand. Sect. A Phys. Chem.
69A
,
325
(
1965
).
42.
R. M.
Waxler
,
D.
Horowitz
, and
A.
Feldman
,
Appl. Opt.
18
,
101
(
1979
).
43.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, Course of Theoretical Physics Vol. 7 (
Pergamon
,
New York, NY
,
1986
).
44.
W.
Martienssen
and
H.
Warlimont
,
Springer Handbook of Condensed Matter and Materials Data
(
Springer-Verlag
,
2005
).
45.
P. C.
Schultz
,
J. Am. Ceram. Soc.
57
,
309
(
1974
).
46.
O.
Humbach
,
H.
Fabian
,
U.
Grzesik
,
U.
Haken
, and
W.
Heitmann
,
J. Non-Cryst. Solids
203
,
19
(
1996
).
47.
B.
Sloots
,
Vibrational Spectrosc.
48
,
158
(
2008
).
You do not currently have access to this content.