Intermetallic compounds have been proposed as potential interconnect materials for advanced semiconductor devices. This study reports the interdiffusion reliability and resistivity scaling of three low-resistivity intermetallic compounds (Cu2Mg, CuAl2, and NiAl) formed on thermally grown SiO2. Experimental observations and thermodynamic calculations indicated good interdiffusion reliability with CuAl2 and NiAl but not with Cu2Mg. This was due to slow reaction between Al and SiO2 in conjunction with strong chemical bonds of Cu–Al and Ni–Al. As for resistivity scaling, all three intermetallic compounds showed better resistivity scalability than Cu. Resistivity of the thin films was measured and characteristic parameters were obtained by curve fitting using a classical scattering model. First-principles calculations were carried out to determine the electron mean free path and bulk resistivity in order to explain the resistivity scaling. The results showed the importance of having optimum microstructure features, i.e., low-defect-density surface, interface, and grain boundaries in addition to optimum material properties, i.e., a short mean free path and low bulk resistivity. CuAl2 and NiAl appeared to satisfy the interdiffusion and resistivity conditions and be promising candidates to replace Cu interconnections for future devices.

1.
K.
Banerjee
and
A.
Mehrotra
,
IEEE Circuits Devices Mag.
17
,
16
(
2001
).
2.
P.
Kapur
,
J. P.
McVittie
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
49
,
590
(
2002
).
3.
C. R.
Tellier
and
A. J.
Tosser
,
Size Effects of Thin Films
(
Elsevier
,
Amsterdam
,
1982
).
4.
B.
Li
,
T. D.
Sullivan
,
T. C.
Lee
, and
D.
Badami
,
Microelectron. Reliab.
44
,
365
(
2004
).
5.
K.
Fuchs
,
Proc. Cambridge Philos. Soc.
34
,
100
(
1938
).
6.
7.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
8.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
9.
M. H.
van der Veen
,
K.
Vandersmissen
,
D.
Dictus
,
S.
Demuynck
,
R.
Liu
,
X.
Bin
,
P.
Nalla
,
A.
Lesniewska
,
L.
Hall
,
K.
Croes
,
L.
Zhao
,
J.
Bommels
,
A.
Kolics
, and
Z.
Tokei
, in
2015 IEEE International Interconnect Technology Conference/Materials for Advanced Metallization Conference
(
IEEE
,
2015
), pp.
25
27
.
10.
J.
Kelly
,
J. H.-C.
Chen
,
H.
Huang
,
C. K.
Hu
,
E.
Liniger
,
R.
Patlolla
,
B.
Peethala
,
P.
Adusumilli
,
H.
Shobha
,
T.
Nogami
,
T.
Spooner
,
E.
Huang
,
D.
Edelstein
,
D.
Canaperi
,
V.
Kamineni
,
F.
Mont
, and
S.
Siddiqui
, in
2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference
(
IEEE
,
2016
), pp.
40
42
.
11.
I.
Zyulkov
,
S.
Armini
,
K.
Opsomer
,
C.
Detavernier
, and
S. D.
Gendt
,
J. Mater. Chem. C
7
,
4392
(
2019
).
12.
L. G.
Wen
,
C.
Adelmann
,
O. V.
Pedreira
,
S.
Dutta
,
M.
Popovici
,
B.
Briggs
,
N.
Heylen
,
K.
Vanstreels
,
C. J.
Wilson
,
S.
Van Elshocht
,
K.
Croes
,
J.
Bömmels
, and
Z.
Tőkei
, in
2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference
(
IEEE
,
2016
), pp.
34
36
.
13.
L. G.
Wen
,
P.
Roussel
,
O.
Varela Pedreira
,
B.
Briggs
,
B.
Groven
,
S.
Dutta
,
M. I.
Popovici
,
N.
Heylen
,
I.
Ciofi
,
K.
Vanstreels
,
F. W.
Østerberg
,
O.
Hansen
,
D. H.
Petersen
,
K.
Opsomer
,
C.
Detavernie
,
C. J.
Wilson
,
S.
Van Elshocht
,
K.
Croes
,
J.
Bömmels
,
Z.
Tőkei
, and
C.
Adelmann
,
ACS Appl. Mater. Interfaces
8
,
26119
(
2016
).
14.
S.
Dutta
,
K.
Moors
,
M.
Vandemaele
, and
C.
Adelmann
,
IEEE Electron Device Lett.
39
,
268
(
2018
).
15.
S. J.
Yoon
,
S.
Lee
,
T. I.
Lee
,
A.
Yoon
, and
B. J.
Cho
,
IEEE Electron Device Lett.
40
,
91
(
2019
).
16.
X.
Zhang
,
H.
Huang
,
R.
Patlolla
,
F. W.
Mont
,
X.
Lin
,
M.
Raymond
,
C.
Labelle
,
E. T.
Ryan
,
D.
Canaperi
,
T. E.
Standaert
,
T.
Spooner
,
G.
Bonilla
, and
D.
Edelstein
, in
2017 IEEE International Interconnect Technology Conference
(
IEEE
,
2017
), pp.
1
3
.
17.
M. H.
van der Veen
,
N.
Heylen
,
O. V.
Pedreira
,
I.
Ciofi
,
S.
Decoster
,
V. V.
Gonzalez
,
N.
Jourdan
,
H.
Struyf
,
K.
Croes
,
C. J.
Wilson
, and
Z.
Tőkei
, in
2018 IEEE International Interconnect Technology Conference
(
IEEE
,
2018
), pp.
172
174
.
18.
C. K.
Hu
,
J.
Kelly
,
J. H. C.
Chen
,
H.
Huang
,
Y.
Ostrovski
,
R.
Patlolla
,
B.
Peethala
,
P.
Adusumilli
,
T.
Spooner
,
L. M.
Gignac
,
J.
Bruley
,
C.
Breslin
,
S. A.
Cohen
,
G.
Lian
,
M.
Ali
,
R.
Long
,
G.
Hornicek
,
T.
Kane
,
V.
Kamineni
,
X.
Zhang
,
F.
Mont
, and
S.
Siddiqui
, in
2017 IEEE International Interconnect Technology Conference
(
IEEE
,
2017
), pp.
1
3
.
19.
O. V.
Pedreira
,
K.
Croes
,
A.
Leśniewska
,
C.
Wu
,
M. H.
van der Veen
,
J.
de Messemaeker
,
K.
Vandersmissen
,
N.
Jourdan
,
L. G.
Wen
,
C.
Adelmann
,
B.
Briggs
,
V. V.
Gonzalez
,
J.
Bömmels
, and
Z.
Tőkei
, in
2017 IEEE International Reliabillity Physics Symposium
(
IEEE
,
2017
), pp.
6B-2.1
6B-2.8
.
20.
H.
Huang
,
P. S.
McLaughin
,
J. J.
Kelly
,
C.-C.
Yang
,
R. G.
Southwick
,
M.
Wang
,
G.
Bonilla
, and
G.
Karve
, in
2019 IEEE International Reliability Physics Symposium
(
IEEE
,
2019
), pp.
1
5
.
21.
W. F.
Gale
and
T. C.
Totemeier
,
Smithells Metals Reference Book
(
Butterworth-Heinemann
,
Oxford
,
2003
).
22.
H.-D.
Barke
and
H.
Wirbs
,
Chem. Educ. Res. Pract.
3
,
185
(
2002
).
23.
J.-P.
Jan
and
W. B.
Pearson
,
Philos. Mag.
8
,
279
(
1963
).
24.
J.
Penn
and
E.
Miller
,
J. Appl. Phys.
44
,
177
(
1973
).
25.
M. O.
Aboelfotoh
,
K. N.
Tu
,
F.
Nava
, and
M.
Michelini
,
J. Appl. Phys.
75
,
1616
(
1994
).
26.
J. F.
Smith
and
J. R.
Ogren
,
J. Appl. Phys.
29
,
1523
(
1958
).
27.
J. J.
Gniewek
and
C. A.
Wasik
,
J. Appl. Phys.
42
,
2151
(
1971
).
28.
C.
Macchioni
,
J. A.
Rayne
, and
C. L.
Bauer
,
Phys. Rev. B
25
,
3865
(
1982
).
29.
S. R.
Butler
,
J. E.
Hanlon
, and
R. J.
Wasilewski
,
J. Phys. Chem. Solids
30
,
1929
(
1969
).
30.
Y.
Yamaguchi
,
D. A.
Kiewit
,
T.
Aoki
, and
J. O.
Brittain
,
J. Appl. Phys.
39
,
231
(
1968
).
31.
L.
Chen
,
Q.
Chen
,
D.
Ando
,
Y.
Sutou
,
M.
Kubo
, and
J.
Koike
,
Appl. Surf. Sci.
537
,
148035
(
2020
).
32.
L.
Chen
,
D.
Ando
,
Y.
Sutou
, and
J.
Koike
,
J. Vac. Sci. Technol. B
37
,
031215
(
2019
).
33.
L.
Chen
,
D.
Ando
,
Y.
Sutou
,
D.
Gall
, and
J.
Koike
,
Appl. Phys. Lett.
113
,
183503
(
2018
).
34.
L.
Chen
,
D.
Ando
,
Y.
Sutou
,
S.
Yokogawa
, and
J.
Koike
,
Appl. Surf. Sci.
497
,
143810
(
2019
).
35.
C. W.
Bale
,
P.
Chartrand
,
S. A.
Degterov
,
G.
Eriksson
,
K.
Hack
,
R. B.
Mahfoud
,
J.
Melançon
,
A. D.
Pelton
, and
S.
Petersen
,
Calphad
26
,
189
(
2002
).
36.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
,
Phys. Rev. B
65
,
035109
(
2001
).
37.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T. A.
Arias
,
SoftwareX 
6
,
278
(
2017
).
38.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
 III
, and
H. A.
Atwater
,
ACS Nano
10
,
957
(
2016
).
39.
V.
Sundararajan
,
B. R.
Sahu
,
D. G.
Kanhere
,
P. V.
Panat
, and
G. P.
Das
,
J. Phys. Condens. Matter
7
,
6019
(
1995
).
40.
K. M.
Carling
and
E. A.
Carter
,
Acta Mater.
55
,
2791
(
2007
).
41.
W. A.
Lanford
,
P. J.
Ding
,
W.
Wang
,
S.
Hymes
, and
S. P.
Muraka
,
Thin Solid Films
262
,
234
(
1995
).
42.
W. A.
Lanford
,
P. J.
Ding
,
W.
Wang
,
S.
Hymes
, and
S. P.
Murarka
,
Mater. Chem. Phys.
41
,
192
(
1995
).
43.
W.
Wang
,
P. J.
Ding
,
S.
Hymes
,
S. P.
Murarka
, and
W. A.
Lanford
,
Chem. Eng. Commun.
152-153
,
253
(
1996
).
44.
P.-I.
Wang
,
S. P.
Murarka
,
D. A.
Kaminski
,
S.
Bedell
, and
W. A.
Lanford
,
J. Electrochem. Soc.
148
,
G481
(
2001
).
45.
C.
Wagner
,
Z. Physik. Chem.
B21
,
25
(
1933
).
46.
J.
Pelleg
,
Diffusion in Ceramics
(
Springer International Publication
,
2016
).
47.
L. J.
Aschan
,
Acta Polytech. Scand.
11
,
1
(
1960
).
48.
N.
Ponweiser
and
K. W.
Richter
,
J. Alloys Compd.
512
,
252
(
2012
).
49.
M.
Jain
and
S. P.
Gupta
,
Mater. Charact.
51
,
243
(
2003
).
50.
J. A.
Rayne
,
M. P.
Shearer
, and
C. L.
Bauer
,
Thin Solid Films
65
,
381
(
1980
).
51.
P.
Zheng
and
D.
Gall
,
J. Appl. Phys.
122
,
135301
(
2017
).
52.
J.
Vancea
,
H.
Hoffmann
, and
K.
Kastner
,
Thin Solid Films
121
,
201
(
1984
).
53.
J. M.
Camacho
and
A. I.
Oliva
,
Microelectron. J.
36
,
555
(
2005
).
54.
U.
Jacob
,
J.
Vancea
, and
H.
Hoffmann
,
Phys. Rev. B
41
,
11852
(
1990
).
55.
E.
Schmiedl
,
P.
Wissmann
, and
H. U.
Finzel
,
Z. Naturforsch A
63
,
739
(
2008
).
56.
E. V.
Barnat
,
D.
Nagakura
,
P.-I.
Wang
, and
T.-M.
Lu
,
J. Appl. Phys.
91
,
1667
(
2002
).
57.
C.
Lingk
,
M. E.
Gross
, and
W. L.
Brown
,
J. Appl. Phys.
87
,
2232
(
2000
).
58.
J. M. E.
Harper
,
C.
Cabral
,
P. C.
Andricacos
,
L.
Gignac
,
I. C.
Noyan
,
K. P.
Rodbell
, and
C. K.
Hu
,
J. Appl. Phys.
86
,
2516
(
1999
).
59.
S.
Dutta
,
K.
Sankaran
,
K.
Moors
,
G.
Pourtois
,
S. V.
Elshocht
,
J.
Bömmels
,
W.
Vandervorst
,
Z.
Tőkei
, and
C.
Adelmann
,
J. Appl. Phys.
122
,
025107
(
2017
).
60.
H. D.
Liu
,
Y. P.
Zhao
,
G.
Ramanath
,
S. P.
Murarka
, and
G. C.
Wang
,
Thin Solid Films
384
,
151
(
2001
).
61.
W.
Steinhoegl
,
G.
Schindler
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
, in
2003 International Conference on Simulation of Semiconductor Processes and Devices
(
IEEE
,
2003
), pp.
27
30
.
62.
T. J.
Zhou
,
P. Y.
Zheng
,
S. C.
Pandey
,
R.
Sundararaman
, and
D.
Gall
,
J. Appl. Phys.
123
,
155107
(
2018
).
63.
H.
Marom
and
M.
Eizenberg
,
J. Appl. Phys.
99
,
123705
(
2006
).
64.
D.
Gall
,
J. Appl. Phys.
127
,
050901
(
2020
).
65.
C.
Adelmann
,
Solid State Electron.
152
,
72
(
2019
).
66.
J. W.
Lim
,
K.
Mimura
, and
M.
Isshiki
,
Appl. Surf. Sci.
217
,
95
(
2003
).
67.
S. M.
Rossnagel
and
T. S.
Kuan
,
J. Vac. Sci. Technol. B
22
,
240
(
2004
).
68.
T.
Sun
,
B.
Yao
,
A. P.
Warren
,
K.
Barmak
,
M. F.
Toney
,
R. E.
Peale
, and
K. R.
Coffey
,
Phys. Rev. B
81
,
155454
(
2010
).
69.
J. S.
Chawla
,
F.
Gstrein
,
K. P.
O’Brien
,
J. S.
Clarke
, and
D.
Gall
,
Phys. Rev. B
84
,
235423
(
2011
).
70.
K.
Barmak
,
A.
Darbal
,
K. J.
Ganesh
,
P. J.
Ferreira
,
J. M.
Rickman
,
T.
Sun
,
B.
Yao
,
A. P.
Warren
, and
K. R.
Coffey
,
J. Vac. Sci. Technol. A
32
,
061503
(
2014
).
71.
J. J.
Plombon
,
E.
Andideh
,
V. M.
Dubin
, and
J.
Maiz
,
Appl. Phys. Lett.
89
,
113124
(
2006
).
72.
Y. F.
Zhu
,
X. Y.
Lang
,
W. T.
Zheng
, and
Q.
Jiang
,
ACS Nano
4
,
3781
(
2010
).
73.
B.
Feldman
,
S.
Park
,
M.
Haverty
,
S.
Shankar
, and
S. T.
Dunham
,
Phys. Status Solidi
247
,
1791
(
2010
).
74.
N. A.
Lanzillo
,
J. Appl. Phys.
121
,
175104
(
2017
).
75.
M.
César
,
D. P.
Liu
,
D.
Gall
, and
H.
Guo
,
Phys. Rev. Appl.
2
,
044007
(
2014
).
76.
J. D.
Livingston
and
E. L.
Hall
,
J. Mater. Res.
5
,
5
(
1990
).
77.
D. E.
Luzzi
,
G.
Rao
,
T. A.
Dobbins
, and
D. P.
Pope
,
Acta Mater.
46
,
2913
(
1998
).
78.
D. P.
Pope
and
F.
Chu
,
Philos. Mag. A
69
,
409
(
1994
).
79.
M.
Takata
,
Y.
Kitano
, and
Y.
Komura
,
Acta Cryst. B
45
,
6
(
1989
).
80.
E.
Milosevic
and
D.
Gall
,
IEEE Trans. Electron Devices
66
,
2692
(
2019
).
81.
J. C.
Yang
,
E.
Schumann
,
H.
Müllejans
, and
M.
Rühle
,
J. Phys. D Appl. Phys.
29
,
1716
(
1996
).
82.
J. S.
Chawla
,
F.
Zahid
,
H.
Guo
, and
D.
Gall
,
Appl. Phys. Lett.
97
,
132106
(
2010
).
You do not currently have access to this content.