EuMg2Bi2 has been investigated to understand the electronic and magnetic behaviors as an antiferromagnetic (AFM) topological semimetal candidate. High-quality single crystals of EuMg2Bi2 were grown via a Bi flux and, subsequently, characterized to be consistent with the previously reported bulk magnetic and resistivity properties. A ferromagnetic interaction is indicated by the positive Curie–Weiss temperature obtained through fitting the bulk magnetic susceptibility data. The bulk resistivity measurements reveal an interesting electronic behavior that is potentially influenced by a competing antiferromagnetic and ferromagnetic interaction in and out of the ab plane. From the resulting refinement of the neutron diffraction data, EuMg2Bi2 was found to exhibit an A-type magnetic structure with Eu2+ moments ferromagnetically aligned in the plane and antiferromagnetically stacked between neighbor ferromagnetic Eu layers. The power law fitting magnetic ordering parameter below TN ∼ 8 K agrees with the 2D Heisenberg model, indicating a weak interlayer antiferromagnetic interaction. Considering the magnetic structure determined by neutron diffraction, the surface state calculation suggests that EuMg2Bi2 is an AFM topological insulator candidate. Linearly dispersed Dirac surface states were also observed in our angle-resolved photoemission spectroscopy measurements, consistent with the calculation.

1.
O.
Vafek
and
A.
Vishwanath
, “
Dirac fermions in solids—From high Tc cuprates and graphene to topological insulators and Weyl semimetals
,”
Annu. Rev. Condens. Matter Phys.
5
,
83
112
(
2014
).
2.
M.
Sato
and
Y.
Ando
, “
Topological superconductors: A review
,”
Rep. Prog. Phys.
80
,
076501
(
2017
).
3.
R.
Li
,
J.
Wang
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Dynamical axion field in topological magnetic insulators
,”
Nat. Phys.
6
,
284
288
(
2010
).
4.
A. M.
Essin
,
J. E.
Moore
, and
D.
Vanderbilt
, “
Magnetoelectric polarizability and axion electrodynamics in crystalline insulators
,”
Phys. Rev. Lett.
102
,
146805
(
2009
).
5.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L.-L.
Wang
,
Z.-Q.
Ji
,
Y.
Feng
,
S.
Ji
,
X.
Chen
,
J.
Jia
,
X.
Dai
,
Z.
Fang
,
S.-C.
Zhang
,
K.
He
,
Y.
Wang
,
L.
Lu
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
170
(
2013
).
6.
X.-L.
Qi
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Chiral topological superconductor from the quantum Hall state
,”
Phys. Rev. B
82
,
184516
(
2010
).
7.
L. M.
Schoop
,
X.
Dai
,
R. J.
Cava
, and
R.
Ilan
, “
Special topic on topological semimetals—New directions
,”
APL Mater.
8
,
030401
(
2020
).
8.
A. F.
May
,
M. A.
McGuire
,
J.
Ma
,
O.
Delaire
,
A.
Huq
,
D. J.
Singh
,
W.
Cai
, and
H.
Wang
, “
Thermoelectric transport properties of CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2
,”
Phys. Rev. B
85
,
035202
(
2012
).
9.
J.
Lim
,
Y. S.
Ang
,
F. J.
García de Abajo
,
I.
Kaminer
,
L. K.
Ang
, and
L. J.
Wong
, “
Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals
,”
Phys. Rev. Res.
2
,
043252
(
2020
).
10.
K. J. A.
Ooi
,
Y. S.
Ang
,
Q.
Zhai
,
D. T. H.
Tan
,
L. K.
Ang
, and
C. K.
Ong
, “
Nonlinear plasmonics of three-dimensional Dirac semimetals
,”
APL Photonics
4
,
034402
(
2018
).
11.
O. F.
Shoron
,
M.
Goyal
,
B.
Guo
,
D. A.
Kealhofer
,
T.
Schumann
, and
S.
Stemmer
, “
Prospects of terahertz transistors with the topological semimetal cadmium arsenide
,”
Adv. Electron. Mater.
6
,
2000676
(
2020
).
12.
L.
Cao
,
G.
Zhou
,
Q.
Wu
,
S. A.
Yang
,
H. Y.
Yang
,
Y. S.
Ang
, and
L. K.
Ang
, “
Electrical contact between an ultrathin topological Dirac semimetal and a two-dimensional material
,”
Phys. Rev. Appl.
13
,
054030
(
2020
).
13.
Topological semimetal nanostructures, from properties to topotronics, see https://pubs-acs-org.proxy.libraries.rutgers.edu/doi/full/10.1021/acsnano.9b07990 (accessed December 19, 2020)
14.
R.
Yu
,
W.
Zhang
,
H.-J.
Zhang
,
S.-C.
Zhang
,
X.
Dai
, and
Z.
Fang
, “
Quantized anomalous Hall effect in magnetic topological insulators
,”
Science
329
,
61
64
(
2010
).
15.
X.
Gui
,
I.
Pletikosic
,
H.
Cao
,
H.-J.
Tien
,
X.
Xu
,
R.
Zhong
,
G.
Wang
,
T.-R.
Chang
,
S.
Jia
,
T.
Valla
,
W.
Xie
, and
R. J.
Cava
, “
A new magnetic topological quantum material candidate by design
,”
ACS Cent. Sci.
5
,
900
910
(
2019
).
16.
S.
Huang
,
J.
Kim
,
W. A.
Shelton
,
E. W.
Plummer
, and
R.
Jin
, “
Nontrivial Berry phase in magnetic BaMnSb2 semimetal
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
6256
6261
(
2017
).
17.
Z.
Wang
,
Y.
Sun
,
X.-Q.
Chen
,
C.
Franchini
,
G.
Xu
,
H.
Weng
,
X.
Dai
, and
Z.
Fang
, “
Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb)
,”
Phys. Rev. B
85
,
195320
(
2012
).
18.
S. K.
Kushwaha
,
J. W.
Krizan
,
B. E.
Feldman
,
A.
Gyenis
,
M. T.
Randeria
,
J.
Xiong
,
S.-Y.
Xu
,
N.
Alidoust
,
I.
Belopolski
,
T.
Liang
,
M. Z.
Hasan
,
N. P.
Ong
,
A.
Yazdani
, and
R. J.
Cava
, “
Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi
,”
APL Mater.
3
,
041504
(
2015
).
19.
S.
Borisenko
,
Q.
Gibson
,
D.
Evtushinsky
,
V.
Zabolotnyy
,
B.
Büchner
, and
R. J.
Cava
, “
Experimental realization of a three-dimensional Dirac semimetal
,”
Phys. Rev. Lett.
113
,
027603
(
2014
).
20.
S.
Klemenz
,
S.
Lei
, and
L. M.
Schoop
, “
Topological semimetals in square-net materials
,”
Annu. Rev. Mater. Res.
49
,
185
206
(
2019
).
21.
B.-B.
Fu
,
C.-J.
Yi
,
T.-T.
Zhang
,
M.
Caputo
,
J.-Z.
Ma
,
X.
Gao
,
B. Q.
Lv
,
L.-Y.
Kong
,
Y.-B.
Huang
,
P.
Richard
,
M.
Shi
,
V. N.
Strocov
,
C.
Fang
,
H.-M.
Weng
,
Y.-G.
Shi
,
T.
Qian
, and
H.
Ding
, “
Dirac nodal surfaces and nodal lines in ZrSiS
,”
Sci. Adv.
5
,
eaau6459
(
2019
).
22.
J.
Park
,
G.
Lee
,
F.
Wolff-Fabris
,
Y. Y.
Koh
,
M. J.
Eom
,
Y. K.
Kim
,
M. A.
Farhan
,
Y. J.
Jo
,
C.
Kim
,
J. H.
Shim
, and
J. S.
Kim
, “
Anisotropic Dirac Fermions in a Bi square net of SrMnBi2
,”
Phys. Rev. Lett.
107
,
126402
(
2011
).
23.
X.
Zhang
,
Q.
Liu
,
Q.
Xu
,
X.
Dai
, and
A.
Zunger
, “
Topological insulators versus topological Dirac semimetals in honeycomb compounds
,”
J. Am. Chem. Soc.
140
,
13687
13694
(
2018
).
24.
A. F.
May
,
M. A.
McGuire
, and
B. C.
Sales
, “
Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi2
,”
Phys. Rev. B
90
,
075109
(
2014
).
25.
H.
Masuda
,
H.
Sakai
,
M.
Tokunaga
,
Y.
Yamasaki
,
A.
Miyake
,
J.
Shiogai
,
S.
Nakamura
,
S.
Awaji
,
A.
Tsukazaki
,
H.
Nakao
,
Y.
Murakami
,
T.
Arima
,
Y.
Tokura
, and
S.
Ishiwata
, “
Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional dirac fermions
,”
Sci. Adv.
2
,
e1501117
(
2016
).
26.
Y.
Shiomi
,
H.
Watanabe
,
H.
Masuda
,
H.
Takahashi
,
Y.
Yanase
, and
S.
Ishiwata
, “
Observation of magnetopiezoelectric effect in antiferromagnetic metal EuMnBi2
,”
Phys. Rev. Lett.
122
,
127207
(
2019
).
27.
S.
Borisenko
,
D.
Evtushinsky
,
Q.
Gibson
,
A.
Yaresko
,
K.
Koepernik
,
T.
Kim
,
M.
Ali
,
J.
van den Brink
,
M.
Hoesch
,
A.
Fedorov
,
E.
Haubold
,
Y.
Kushnirenko
,
I.
Soldatov
,
R.
Schäfer
, and
R. J.
Cava
, “
Time-reversal symmetry breaking type-II Weyl state in YbMnBi2
,”
Nat. Commun.
10
,
3424
(
2019
).
28.
J.-R.
Soh
,
H.
Jacobsen
,
B.
Ouladdiaf
,
A.
Ivanov
,
A.
Piovano
,
T.
Tejsner
,
Z.
Feng
,
H.
Wang
,
H.
Su
,
Y.
Guo
,
Y.
Shi
, and
A. T.
Boothroyd
, “
Magnetic structure and excitations of the topological semimetal YbMnBi2
,”
Phys. Rev. B
100
,
144431
(
2019
).
29.
N. H.
Jo
,
B.
Kuthanazhi
,
Y.
Wu
,
E.
Timmons
,
T.-H.
Kim
,
L.
Zhou
,
L.-L.
Wang
,
B. G.
Ueland
,
A.
Palasyuk
,
D. H.
Ryan
,
R. J.
McQueeney
,
K.
Lee
,
B.
Schrunk
,
A. A.
Burkov
,
R.
Prozorov
,
S. L.
Bud'ko
,
A.
Kaminski
, and
P. C.
Canfield
, “
Manipulating of magnetism in the topological semimetal EuCd2As2
,”
Phys. Rev. B
101
,
140402
(
2020
).
30.
T.-R.
Chang
,
I.
Pletikosic
,
T.
Kong
,
G.
Bian
,
A.
Huang
,
J.
Denlinger
,
S. K.
Kushwaha
,
B.
Sinkovic
,
H.-T.
Jeng
,
T.
Valla
,
W.
Xie
, and
R. J.
Cava
, “
Realization of a type-II nodal-line semimetal in Mg3Bi2
,”
Adv. Sci.
6
,
1800897
(
2019
).
31.
A. F.
May
,
M. A.
McGuire
,
D. J.
Singh
,
R.
Custelcean
, and
G. E.
Jellison
, “
Structure and properties of single crystalline CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2
,”
Inorg. Chem.
50
,
11127
11133
(
2011
).
32.
S.
Pakhira
,
M. A.
Tanatar
, and
D. C.
Johnston
, “
Magnetic, thermal, and electronic-transport properties of EuMg2Bi2 single crystals
,”
Phys. Rev. B
101
,
214407
(
2020
).
33.
S.
Pakhira
,
T.
Heitmann
,
S.X.M.
Riberolles
,
B.G.
Ueland
,
R.J.
McQueeney
,
D.C.
Johnston
, and
D.
Vaknin
,
Zero-field magnetic ground state of EuMg2Bi2
, http://arxiv.org/abs/2009.06880 (2020) (accessed October 20, 2020).
34.
J.
Rodríguez-Carvajal
, “
Recent advances in magnetic structure determination by neutron powder diffraction
,”
Phys. B Condens. Matter
192
,
55
69
(
1993
).
35.
R. E.
Dinnebier
and
S. J. L.
Billinge
, “
Chapter 1: Principles of powder diffraction
,” in
Powder Diffraction: Theory and Practice
(RSC Publishing,
2008
), pp.
1
19
. doi:10.1039/9781847558237-00001
36.
G. M.
Sheldrick
, “
Crystal structure refinement with SHELXL
,”
Acta Crystallogr. Sect. C Struct. Chem.
71
,
3
8
(
2015
).
37.
G. M.
Sheldrick
, “
SHELXT—Integrated space-group and crystal-structure determination
,”
Acta Crystallogr. Sect. Found. Adv.
71
,
3
8
(
2015
).
38.
H.
Cao
,
B. C.
Chakoumakos
,
K. M.
Andrews
,
Y.
Wu
,
R. A.
Riedel
,
J.
Hodges
,
W.
Zhou
,
R.
Gregory
,
B.
Haberl
,
J.
Molaison
, and
G. W.
Lynn
, “
DEMAND, a dimensional extreme magnetic neutron diffractometer at the high flux isotope reactor
,”
Crystals
9
,
5
(
2019
).
39.
A. L.
Spek
, “
Single-crystal structure validation with the program PLATON
,”
J. Appl. Crystallogr.
36
,
7
13
(
2003
).
40.
A. L.
Spek
, “
PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors
,”
Acta Crystallogr. Sect. C Struct. Chem.
71
,
9
18
(
2015
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
42.
J. P.
Dahl
and
J.
Avery
,
Local Density Approximations in Quantum Chemistry and Solid State Physics
(
Springer Science & Business Media
,
2013
)
43.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
44.
W.
Shon
,
J.-S.
Rhyee
,
Y.
Jin
, and
S.-J.
Kim
, “
Magnetic polaron and unconventional magnetotransport properties of the single-crystalline compound EuBiTe3
,”
Phys. Rev. B
100
,
024433
(
2019
).
45.
Y.
Zhang
,
K.
Deng
,
X.
Zhang
,
M.
Wang
,
Y.
Wang
,
C.
Liu
,
J.-W.
Mei
,
S.
Kumar
,
E. F.
Schwier
,
K.
Shimada
,
C.
Chen
, and
B.
Shen
, “
In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2
,”
Phys. Rev. B
101
,
205126
(
2020
).
46.
H.
Yamada
and
S.
Takada
, “
Magnetoresistance of antiferromagnetic metals Due to s-d interaction
,”
J. Phys. Soc. Jpn.
34
,
51
57
(
1973
).
47.
P.
Majumdar
and
P. B.
Littlewood
, “
Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors
,”
Nature
395
,
479
481
(
1998
).
48.
M.
Pohlit
,
S.
Rößler
,
Y.
Ohno
,
H.
Ohno
,
S.
von Molnár
,
Z.
Fisk
,
J.
Müller
, and
S.
Wirth
, “
Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6
,”
Phys. Rev. Lett.
120
,
257201
(
2018
).
49.
M. M.
Otrokov
,
I. I.
Klimovskikh
,
H.
Bentmann
,
D.
Estyunin
,
A.
Zeugner
,
Z. S.
Aliev
,
S.
Gaß
,
A. U. B.
Wolter
,
A. V.
Koroleva
,
A. M.
Shikin
,
M.
Blanco-Rey
,
M.
Hoffmann
,
I. P.
Rusinov
,
A. Y.
Vyazovskaya
,
S. V.
Eremeev
,
Y. M.
Koroteev
,
V. M.
Kuznetsov
,
F.
Freyse
,
J.
Sánchez-Barriga
,
I. R.
Amiraslanov
,
M. B.
Babanly
,
N. T.
Mamedov
,
N. A.
Abdullayev
,
V. N.
Zverev
,
A.
Alfonsov
,
V.
Kataev
,
B.
Büchner
,
E. F.
Schwier
,
S.
Kumar
,
A.
Kimura
,
L.
Petaccia
,
G.
Di Santo
,
R. C.
Vidal
,
S.
Schatz
,
K.
Kißner
,
M.
Ünzelmann
,
C. H.
Min
,
S.
Moser
,
T. R. F.
Peixoto
,
F.
Reinert
,
A.
Ernst
,
P. M.
Echenique
,
A.
Isaeva
, and
E. V.
Chulkov
, “
Prediction and observation of an antiferromagnetic topological insulator
,”
Nature.
576
,
416
422
(
2019
).
50.
N.
Mao
,
H.
Wang
,
X.
Hu
,
C.
Niu
,
B.
Huang
, and
Y.
Dai
, “
Antiferromagnetic topological insulator in stable exfoliated two-dimensional materials
,”
Phys. Rev. B
102
,
115412
(
2020
).
51.
T. K.
Bhowmick
,
A.
De
, and
R. K.
Lake
, “
High figure of merit magneto-optics from interfacial skyrmions on topological insulators
,”
Phys. Rev. B
98
,
024424
(
2018
).

Supplementary Material

You do not currently have access to this content.