The results of experimental studies together with numerical and analytical modeling showed that the acceleration of a target by employing the shock compression and water flow generated by the underwater electrical explosion of a wire array can be considered an efficient (up to ∼20%) approach. In experiments, a pulse generator with stored energy of ∼6.5 kJ, current amplitude of ∼380 kA, and rise time of ∼1.2 μs was used for underwater electrical explosion of a copper wire planar array. Streak shadow imaging and photonic Doppler velocimetry were applied to study the time-resolved velocity of the shock in water and an aluminum target in air, respectively. The targets, having different thicknesses and designs, were positioned at variable distances from the array. Experimental results showed that the target velocity evolution is characterized by an ns-timescale rise time peak with a subsequent decrease, which transfers to a μs-timescale increase up to its saturated value. Target velocities of up to 1360m/s were measured. The experimental, numerical, and analytical modeling results showed that a temporally unmovable barrier, located between the exploding array and the target, allows one to increase the pressure in that location, which leads to higher shock velocity in the target.

1.
B. A.
Remington
,
R. M.
Cavallo
,
M. J.
Edwards
,
D. D.-M.
Ho
,
B. F.
Lasinski
,
K. T.
Lorenz
,
H. E.
Lorenzana
,
J. M.
Mcnaney
,
S. M.
Pollaine
, and
R. F.
Smith
,
Astrophys. Space Sci.
298
,
235
240
(
2005
).
2.
T.
Sasaki
,
T.
Takahashi
,
T.
Ohuchi
,
Y.
Kawaguchi
,
K.
Takahashi
,
T.
Kikuchi
,
T.
Aso
,
N.
Harada
,
K.
Horioka
,
H.
Nagatomo
, and
S.
Fujioka
,
Energy Procedia
71
,
261
267
(
2015
).
3.
V. E.
Fortov
and
I. T.
Iakubov
,
The Physics of Non-Ideal Plasma
(
World Scientific
,
Singapore
,
2000
).
4.
A. M.
Evans
,
N. J.
Freeman
,
P.
Graham
,
C. J.
Horsfield
,
S. D.
Rothman
,
B. R.
Thomas
, and
A. J.
Tyrrell
, “
Hugoniot EOS measurements at Mbar pressures
,”
Laser Part. Beams
14
(
2
),
113
123
(
1996
).
5.
L. C.
Chhabildas
,
L. M.
Barker
,
J. R.
Asay
,
T. G.
Trucano
,
G. I.
Kerley
, and
J. E.
Dunn
, “
Launch capabilities to over 10 km/s
,” in
Shock Compression of Condensed Matter—1991
(Elsevier,
1992
), pp.
1025
1031
.
6.
D. B.
Sinars
,
M. A.
Sweeney
,
C. S.
Alexander
 et al,
Phys. Plasmas
27
,
070501
(
2020
).
7.
R. W.
Lemke
,
M. D.
Knudson
,
D. E.
Bliss
,
K.
Cochrane
,
J.-P.
Davis
,
A. A.
Giunta
,
H. C.
Harjes
, and
S. A.
Slutz
,
J. Appl. Phys.
98
,
073530
(
2005
).
8.
A.
Grinenko
,
S.
Efimov
,
A.
Fedotov
,
I.
Schnitzer
, and
Y. E.
Krasik
,
J. Appl. Phys.
100
,
113509
(
2006
).
9.
S.
Efimov
,
V. T.
Gurovich
,
G.
Bazalitski
,
A.
Fedotov
, and
Y. E.
Krasik
,
J. Appl. Phys.
106
,
073308
(
2009
).
10.
A.
Rososhek
,
S.
Efimov
,
A.
Goldman
,
S. V.
Tewari
, and
Y. E.
Krasik
,
Phys. Plasmas
26
,
053510
(
2019
).
11.
A.
Rososhek
,
S.
Efimov
,
A.
Virozub
,
D.
Maler
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
115
,
074101
(
2019
).
12.
V.
Gurovich
,
A.
Virozub
,
A.
Rososhek
,
S.
Bland
,
R. B.
Spielman
, and
Y. E.
Krasik
,
J. Appl. Phys.
123
,
185902
(
2018
).
13.
G.
Bazalitski
,
V. Ts.
Gurovich
,
A.
Fedotov-Gefen
,
S.
Efimov
, and
Ya. E.
Krasik
,
Shock Waves
21
,
321
329
(
2011
).
14.
SESAME: The Los Alamos National Laboratory Equation-of-State Database, edited by S. P. Lyon and J. D. Johnson, Los Alamos National Laboratory Report No. LA-UR-92-3407, 1992.
15.
S.
Efimov
,
A.
Fedotov
,
S.
Gleizer
,
V. T.
Gurovich
,
G.
Bazalitski
, and
Y. E.
Krasik
,
Phys. Plasma
15
,
112703
(
2008
).
16.
B. M.
Kovalchuk
,
A. V.
Kharlov
,
V. B.
Zorin
, and
A. A.
Zherlitsyn
,
Rev. Sci. Instrum.
80
,
083504
(
2009
).
17.
D. H.
Dolan
,
Rev. Sci. Instrum.
81
,
053905
(
2010
).
18.
D. H.
Dolan
and
T.
Ao
, “SIRHEN: A data reduction program for photonic Doppler velocimetry measurements,” Sandia Report No. SAND2010-3628, June 2010.
19.
A.
Rososhek
,
S.
Efimov
,
S. V.
Tewari
,
D.
Yanuka
, and
Y. E.
Krasik
,
Phys. Plasmas
25
,
102709
(
2018
).
20.
D.
Grady
,
Physics of Shock and Impact, Volume 1; Fundamentals and Dynamic Failure
(
IOP Publishing
,
Bristol
,
2017
).
21.
T.
Ao
,
J. R.
Asay
,
S.
Chantrenne
,
M. R.
Baer
, and
C. A.
Hall
,
Rev. Sci. Instrum.
79
,
013903
(
2008
).
22.
S. V.
Razorenov
,
G. I.
Kanel
,
K.
Baumung
, and
H. J.
Bluhm
, “
Hugoniot elastic limit and spall strength of aluminum and copper single crystals over a wide range of strain rates and temperatures
,”
AIP Conf. Proc.
620
,
503
(
2002
).
23.
R. F.
Trunin
,
Shock Compression of Condensed Materials
(
Cambridge Univ. Press.
,
2005
).
24.
Y. B.
Zeldovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
, 2nd ed. (
Academic
,
New York
,
1967
).
25.
R. H.
Cole
,
Underwater Explosion
(
Princeton University Press
,
Princeton
,
NJ
,
1948
).
26.
O.
Antonov
,
S.
Efimov
,
V. T.
Gurovich
,
D.
Yanuka
,
D.
Shafer
, and
Y. E.
Krasik
,
J. Appl. Phys.
115
,
223303
(
2014
).
27.
R.
Khurana
,
P. C.
Gautam
,
R.
Rai
,
A.
Kumar
,
A. C.
Sharma
, and
M.
Singh
,
J. Phys. Conf. Ser.
377
,
012051
(
2012
).
You do not currently have access to this content.