This work presents the first atomic scale evidence for ferroelectric polarization inversion on the unit cell level in a wurtzite-type material based on epitaxial Al0.75Sc0.25N thin films. The electric field induced formation of Al-polar inversion domains in the originally N-polar film is unambiguously determined by atomic resolution imaging using aberration-corrected scanning transmission electron microscopy (STEM). Anisotropic etching supports STEM results confirming a complete and homogenous polarization inversion at the film surface for the switched regions and the virtual absence of previous inversion domains in as-deposited regions. Local evidence of residual N-polar domains at the bottom electrode interface is observed and can be explained by both stress gradients and electric field deflection. The epitaxial relationship of the sapphire/AlN/Mo/AlScN multilayer stack is discussed in detail. Selected-area electron diffraction experiments and XRD pole figures reveal a Pitsch–Schrader type orientation relation between the Mo electrode and the AlScN film.

1.
S.
Oh
,
H.
Hwang
, and
I. K.
Yoo
,
APL Mater.
7
,
091109
(
2019
).
2.
M.
Jerry
,
P.-Y.
Chen
,
J.
Zhang
,
P.
Sharma
,
K.
Ni
,
S.
Yu
, and
S.
Datta
, in
2017 IEEE International Electron Devices Meeting (IEDM)
(IEEE, 2017), pp. 6.2.1–6.2.4.
3.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
4.
J.
Müller
,
T. S.
Böscke
,
S.
Müller
,
E.
Yurchuk
,
P.
Polakowski
,
J.
Paul
,
D.
Martin
,
T.
Schenk
,
K.
Khullar
,
A.
Kersch
,
W.
Weinreich
,
S.
Riedel
,
K.
Seidel
,
A.
Kumar
,
T.M.
Arruda
,
S.V.
Kalinin
,
T.
Schlösser
,
R.
Boschke
,
R.
van Bentum
,
U.
Schröder
, and
T.
Mikolajick
, in
2013 IEEE International Electron Devices Meeting
(IEEE, 2013), pp. 10.8.1–10.8.4.
5.
S.
Fichtner
,
N.
Wolff
,
F.
Lofink
,
L.
Kienle
, and
B.
Wagner
,
J. Appl. Phys.
125
,
114103
(
2019
).
6.
F.
Tasnádi
,
B.
Alling
,
C.
Höglund
,
G.
Wingqvist
,
J.
Birch
,
L.
Hultman
, and
I. A.
Abrikosov
,
Phys. Rev. Lett.
104
,
137601
(
2010
).
7.
S.
Zhang
,
D.
Holec
,
W. Y.
Fu
,
C. J.
Humphreys
, and
M. A.
Moram
,
J. Appl. Phys.
114
,
133510
(
2013
).
8.
S.
Fichtner
,
N.
Wolff
,
G.
Krishnamurthy
,
A.
Petraru
,
S.
Bohse
,
F.
Lofink
,
S.
Chemnitz
,
H.
Kohlstedt
,
L.
Kienle
, and
B.
Wagner
,
J. Appl. Phys.
122
,
035301
(
2017
).
9.
P. M.
Mayrhofer
,
C.
Eisenmenger-Sittner
,
M.
Stöger-Pollach
,
H.
Euchner
,
A.
Bittner
, and
U.
Schmid
,
J. Appl. Phys.
115
,
193505
(
2014
).
10.
Y.
Lu
,
M.
Reusch
,
N.
Kurz
,
A.
Ding
,
T.
Christoph
,
M.
Prescher
,
L.
Kirste
,
O.
Ambacher
, and
A.
Žukauskaitė
,
APL Mater.
6
,
076105
(
2018
).
11.
M.
Baeumler
,
Y.
Lu
,
N.
Kurz
,
L.
Kirste
,
M.
Prescher
,
T.
Christoph
,
J.
Wagner
,
A.
Žukauskaitė
, and
O.
Ambacher
,
J. Appl. Phys.
126
,
045715
(
2019
).
12.
D.
Zhuang
and
J. H.
Edgar
,
Mater. Sci. Eng. R
48
,
1
(
2005
).
13.
14.
C.
Meyer
,
N.
Dellby
,
J. A.
Hachtel
,
T.
Lovejoy
,
A.
Mittelberger
, and
O.
Krivanek
,
Microsc. Microanal.
25
,
122
(
2019
).
15.
E. J.
Kirkland
, in
Advanced Computing in Electron Microscopy
, edited by
E. J.
Kirkland
(
Springer US
,
Boston
,
MA
,
2010
), pp.
77
113
.
16.
B.
Fultz
and
J. M.
Howe
,
Transmission Electron Microscopy and Diffractometry of Materials
, 4th ed. (
Springer-Verlag
,
Berlin
,
2013
).
17.
Y.
Goldberg
,
Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe
(
Wiley
,
New York
,
2001
).
18.
C.
Gao
,
O.
Brandt
,
S. C.
Erwin
,
J.
Lähnemann
,
U.
Jahn
,
B.
Jenichen
, and
H.-P.
Schönherr
,
Phys. Rev. B
82
,
125415
(
2010
).
19.
W.
Pitsch
and
A.
Schrader
,
Arch. Eisenhüttenw.
29
,
715
(
1958
).
20.
W. G.
Burgers
,
Physica
1
,
561
(
1934
).
21.
K.
Okamoto
,
S.
Inoue
,
T.
Nakano
,
T.-W.
Kim
,
M.
Oshima
, and
H.
Fujioka
,
Thin Solid Films
516
,
4809
(
2008
).
22.
T.
Kamohara
,
M.
Akiyama
,
N.
Ueno
, and
N.
Kuwano
,
Ceram. Int.
34
,
985
(
2008
).
23.
H.
Schulz
and
K. H.
Thiemann
,
Solid State Commun.
23
,
815
(
1977
).
24.
P.
Visconti
,
D.
Huang
,
M. A.
Reshchikov
,
F.
Yun
,
R.
Cingolani
,
D. J.
Smith
,
J.
Jasinski
,
W.
Swider
,
Z.
Liliental-Weber
, and
H.
Morkoç
,
Mater. Sci. Eng. B
93
,
229
(
2002
).
25.
G. A. C. M.
Spierings
,
G. J. M.
Dormans
,
W. G. J.
Moors
,
M. J. E.
Ulenaers
, and
P. K.
Larsen
,
J. Appl. Phys.
78
,
1926
(
1995
).
26.
M. D.
Biegalski
,
D. H.
Kim
,
S.
Choudhury
,
L. Q.
Chen
,
H. M.
Christen
, and
K.
Dörr
,
Appl. Phys. Lett.
98
,
142902
(
2011
).
27.
V.
Darakchieva
,
J.
Birch
,
M.
Schubert
,
T.
Paskova
,
S.
Tungasmita
,
G.
Wagner
,
A.
Kasic
, and
B.
Monemar
,
Phys. Rev. B
70
,
045411
(
2004
).
28.
G.
Catalan
,
A.
Lubk
,
A. H. G.
Vlooswijk
,
E.
Snoeck
,
C.
Magen
,
A.
Janssens
,
G.
Rispens
,
G.
Rijnders
,
D. H. A.
Blank
, and
B.
Noheda
,
Nat. Mater.
10
,
963
(
2011
).
29.
Y. L.
Tang
,
Y. L.
Zhu
,
Y.
Liu
,
Y. J.
Wang
, and
X. L.
Ma
,
Nat. Commun.
8
,
15994
(
2017
).
30.
D.F.
Urban
,
O.
Ambacher
, and
C.
Elsässer
, arXiv:2002.08143 [cond-mat] (
2020
).
31.
Y.
Zhou
,
H. K.
Chan
,
C. H.
Lam
, and
F. G.
Shin
,
J. Appl. Phys.
98
,
024111
(
2005
).

Supplementary Material

You do not currently have access to this content.