A 3D plasmonic sensing platform that combines the properties of citrate gold nanoparticles (AuNPs) and poly-(ethylene glycol) diacrylate (PEGDA) hydrogels is proposed as a nanocomposite hybrid material for biosensing applications, whose optical properties and sensitivity can be tuned by varying the particle mean diameter as also predicted by the Mie theory. It is found that AuNPs embedded in the hydrogel network are more stable when compared to the colloidal aqueous solutions. PEGDA hydrogel physically retains the gold nanoparticles even after a full swelling process during immersion in liquids. Such a property is confirmed by exposing the AuNPs-containing PEGDA hydrogels to organic solvents and buffers that would usually cause the aggregation of the nanoparticles in solution. Moreover, biotin, as a small molecule model, has been captured, and optically detected with a transmission mode customized setup, by a cysteamine modified AuNPs-containing PEGDA hydrogel layer to achieve a biorecognition hybrid device.

1.
K. M.
Mayer
and
J. H.
Hafner
, “
Localized surface plasmon resonance sensors
,”
Chem. Rev.
111
,
3828
3857
(
2011
).
2.
A.
Desireddy
,
B. E.
Conn
,
J.
Guo
,
B.
Yoon
,
R. N.
Barnett
,
B. M.
Monahan
,
K.
Kirschbaum
,
W. P.
Griffith
,
R. L.
Whetten
,
U.
Landman
et al., “
Ultrastable silver nanoparticles
,”
Nature
501
,
399
402
(
2013
).
3.
N.
Bhalla
,
A.
Jamshaid
,
M. H.
Leung
,
N.
Ishizu
, and
A. Q.
Shen
, “
Electrical contact of metals at the nanoscale overcomes the oxidative susceptibility of silver-based nanobiosensors
,”
ACS Appl. Nano Mater.
2
,
2064
2075
(
2019
).
4.
F.
Aouidat
,
Z.
Halime
,
R.
Moretta
,
I.
Rea
,
S.
Filosa
,
S.
Donato
,
R.
Tatè
,
L.
De Stefano
,
R.
Tripier
, and
J.
Spadavecchia
, “
Design and synthesis of hybrid pegylated metal monopicolinate cyclam ligands for biomedical applications
,”
ACS Omega
4
,
2500
2509
(
2019
).
5.
M. S.
Kang
,
S. Y.
Lee
,
K. S.
Kim
, and
D.-W.
Han
, “
State of the art biocompatible gold nanoparticles for cancer theragnosis
,”
Pharmaceutics
12
,
701
(
2020
).
6.
J.
Conde
,
J. T.
Dias
,
V.
Grazú
,
M.
Moros
,
P. V.
Baptista
, and
J. M.
de la Fuente
, “
Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine
,”
Front. Chem.
2
,
48
(
2014
).
7.
J. C.
Love
,
L. A.
Estroff
,
J. K.
Kriebel
,
R. G.
Nuzzo
, and
G. M.
Whitesides
, “
Self-assembled monolayers of thiolates on metals as a form of nanotechnology
,”
Chem. Rev.
105
,
1103
1170
(
2005
).
8.
Z.
Zhang
,
H.
Wang
,
Z.
Chen
,
X.
Wang
,
J.
Choo
, and
L.
Chen
, “
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications
,”
Biosens. Bioelectron.
114
,
52
65
(
2018
).
9.
J.
Sun
,
Y.
Lu
,
L.
He
,
J.
Pang
,
F.
Yang
, and
Y.
Liu
, “
Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances
,”
TrAC Trends Anal. Chem.
122
,
115754
(
2020
).
10.
J.
Politi
,
J.
Spadavecchia
,
G.
Fiorentino
,
I.
Antonucci
, and
L.
De Stefano
, “
Arsenate reductase from thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions
,”
J. R. Soc. Interface
13
,
20160629
(
2016
).
11.
M.
Iarossi
,
C.
Schiattarella
,
I.
Rea
,
L.
De Stefano
,
R.
Fittipaldi
,
A.
Vecchione
,
R.
Velotta
, and
B. D.
Ventura
, “
Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles
,”
ACS Omega
3
,
3805
3812
(
2018
).
12.
A.
Levin
,
A.
Ringaci
,
M.
Alenichev
,
E.
Drozhzhennikova
,
K.
Shevchenko
,
V.
Cherkasov
,
M.
Nikitin
, and
P.
Nikitin
, “
Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation
,”
Anal. Bioanal. Chem.
412
,
1
9
(
2020
).
13.
S.
Aryal
,
R. B.
KC
,
N.
Bhattarai
,
C. K.
Kim
, and
H. Y.
Kim
, “
Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids
,”
J. Colloid Interface Sci.
299
,
191
197
(
2006
).
14.
S.
Hu
,
P.-J. J.
Huang
,
J.
Wang
, and
J.
Liu
, “
Dissecting the effect of salt for more sensitive label-free colorimetric detection of DNA using gold nanoparticles
,”
Anal Chem.
92
,
13354
13360
(
2020
).
15.
N.
Kazanskiy
,
S.
Khonina
, and
M.
Butt
, “
Plasmonic sensors based on metal–insulator–metal waveguides for refractive index sensing applications: A brief review
,”
Physica E
117
,
113798
(
2020
).
16.
S.
Barizuddin
,
S.
Bok
, and
S.
Gangopadhyay
, “
Plasmonic sensors for disease detection—A review
,”
J. Nanomed. Nanotechnol.
7
,
1000373
(
2016
).
17.
B.
Miranda
,
K.-Y.
Chu
,
P. L.
Maffettone
,
A. Q.
Shen
, and
R.
Funari
, “
Metal-enhanced fluorescence immunosensor based on plasmonic arrays of gold nanoislands on an etched glass substrate
,”
ACS Appl. Nano Mater.
3
,
10470
10478
(
2020
).
18.
S. L.
Dodson
,
C.
Cao
,
H.
Zaribafzadeh
,
S.
Li
, and
Q.
Xiong
, “
Engineering plasmonic nanorod arrays for colon cancer marker detection
,”
Biosens. Bioelectron.
63
,
472
477
(
2015
).
19.
G. K.
Joshi
,
S.
Deitz-McElyea
,
M.
Johnson
,
S.
Mali
,
M.
Korc
, and
R.
Sardar
, “
Highly specific plasmonic biosensors for ultrasensitive micro-RNA detection in plasma from pancreatic cancer patients
,”
Nano Lett.
14
,
6955
6963
(
2014
).
20.
G. A.
Lopez
,
M.-C.
Estevez
,
M.
Soler
, and
L. M.
Lechuga
, “
Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration
,”
Nanophotonics
6
,
123
136
(
2017
).
21.
C.
Huang
,
K.
Bonroy
,
G.
Reekmans
,
W.
Laureyn
,
K.
Verhaegen
,
I.
De Vlaminck
,
L.
Lagae
, and
G.
Borghs
, “
Localized surface plasmon resonance biosensor integrated with microfluidic chip
,”
Biomed. Microdev.
11
,
893
901
(
2009
).
22.
C.
Huang
,
K.
Bonroy
,
G.
Reekman
,
K.
Verstreken
,
L.
Lagae
, and
G.
Borghs
, “
An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction
,”
Microelectron. Eng.
86
,
2437
2441
(
2009
).
23.
R.
Rebelo
,
A. I.
Barbosa
,
D.
Caballero
,
I. K.
Kwon
,
J. M.
Oliveira
,
S. C.
Kundu
,
R. L.
Reis
, and
V. M.
Correlo
, “
3D biosensors in advanced medical diagnostics of high mortality diseases
,”
Biosens. Bioelectron.
130
,
20
39
(
2019
).
24.
D.
Buenger
,
F.
Topuz
, and
J.
Groll
, “
Hydrogels in sensing applications
,”
Prog. Polym. Sci.
37
,
1678
1719
(
2012
).
25.
L.
Feng
,
L.
Wang
,
Z.
Hu
,
Y.
Tian
,
Y.
Xian
, and
L.
Jin
, “
Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry
,”
Microchim. Acta
164
,
49
54
(
2009
).
26.
P. J.
Driest
,
I. E.
Allijn
,
D. J.
Dijkstra
,
D.
Stamatialis
, and
D. W.
Grijpma
, “
Poly (ethylene glycol)-based poly (urethane isocyanurate) hydrogels for contact lens applications
,”
Polym. Int.
69
,
131
139
(
2020
).
27.
C.-C.
Lin
and
K. S.
Anseth
, “
Peg hydrogels for the controlled release of biomolecules in regenerative medicine
,”
Pharm. Res.
26
,
631
643
(
2009
).
28.
R.
Randriantsilefisoa
,
C.
Nie
,
B.
Parshad
,
Y.
Pan
,
S.
Bhatia
, and
R.
Haag
, “
Double trouble for viruses: A hydrogel nanocomposite catches the influenza virus while shrinking and changing color
,”
Chem. Commun.
56
,
3547
3550
(
2020
).
29.
J. E.
Song
and
E. C.
Cho
, “
Dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures formed with hydrogel and gold nanocolloids
,”
Sci. Rep.
6
,
34622
(
2016
).
30.
H. I.
Muri
,
A.
Bano
, and
D. R.
Hjelme
, “
A single-point, multiparameter, fiber optic sensor based on a combination of interferometry and LSPR
,”
J. Lightwave Technol.
36
,
1159
1167
(
2018
).
31.
N. G.
Bastús
,
J.
Comenge
, and
V.
Puntes
, “
Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening
,”
Langmuir
27
,
11098
11105
(
2011
).
32.
C.
Bohren
and
D. R.
Huffman
, Absorption and Scattering of Light by Small Particles, edited by C. Bohren and D. R. Huffman (Wiley Science Paperback Series, 1998).
33.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
34.
A.
Sánchez-Iglesias
,
N.
Claes
,
D. M.
Solís
,
J. M.
Taboada
,
S.
Bals
,
L. M.
Liz-Marzán
, and
M.
Grzelczak
, “
Reversible clustering of gold nanoparticles under confinement
,”
Angew. Chem.
130
,
3237
3240
(
2018
).
35.
A.
De Lucia
,
I.
Rea
,
R.
Moretta
,
M.
Terracciano
,
J.
Spadavecchia
,
G.
Fiorentino
,
C.
Forestiere
, and
L.
De Stefano
, “
Optical modelling of hybrid nanoparticles for theranostic applications
,” in
Proceedings of 19th Italian National Conference on Photonic Technologies (Fotonica 2017)
(IET Digital Library, 2017).
36.
C.
Forestiere
,
G.
Miano
, and
G.
Rubinacci
, “Resonance frequency and radiative q-factor of plasmonic and dielectric modes of small objects,” arXiv:2005.05706 [cond-mat.mes-hall] (2020).
37.
C.
Forestiere
,
G.
Miano
,
M.
Pascale
, and
R.
Tricarico
, “Quantum theory of radiative decay rate and frequency shift of surface plasmon modes,” arXiv:2001.11926 [physics.optics] (2020).
38.
N.
Nath
and
A.
Chilkoti
, “
Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size
,”
Anal. Chem.
76
,
5370
5378
(
2004
).
39.
M.
Francoeur
,
P. G.
Venkata
, and
M. P.
Mengüç
, “
Sensitivity analysis for characterization of gold nanoparticles and agglomerates via surface plasmon scattering patterns
,”
J. Quant. Spectrosc. Radiat. Transfer
106
,
44
55
(
2007
).
40.
H.
Chen
,
X.
Kou
,
Z.
Yang
,
W.
Ni
, and
J.
Wang
, “
Shape- and size-dependent refractive index sensitivity of gold nanoparticles
,”
Langmuir
24
,
5233
5237
(
2008
).
41.
N.
Bhalla
,
A.
Jain
,
Y.
Lee
,
A. Q.
Shen
, and
D.
Lee
, “
Dewetting metal nanofilms-effect of substrate on refractive index sensitivity of nanoplasmonic gold
,”
Nanomaterials
9
,
1530
(
2019
).
42.
S.
Scarano
,
M.
Manera
,
A.
Colombelli
,
M.
Minunni
, and
R.
Rella
, “
Nanostructures and polymers: Emerging nanocomposites for plasmonic resonance transducers
,”
Thin Solid Films
698
,
137859
(
2020
).
43.
H.
SadAbadi
,
S.
Badilescu
,
M.
Packirisamy
, and
R.
Wüthrich
, “
Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones
,”
Biosens. Bioelectron.
44
,
77
84
(
2013
).
44.
X.
Zhou
,
S.
Tenaglio
,
T.
Esworthy
,
S. Y.
Hann
,
H.
Cui
,
T. J.
Webster
,
H.
Fenniri
, and
L. G.
Zhang
, “
Three-dimensional printing biologically inspired DNA-based gradient scaffolds for cartilage tissue regeneration
,”
ACS Appl. Mater. Interfaces
12
,
33219
33228
(
2020
).
45.
C.
García-Astrain
,
E.
Lenzi
,
D.
Jimenez de Aberasturi
,
M.
Henriksen-Lacey
,
M. R.
Binelli
, and
L. M.
Liz-Marzán
, “
3D-printed biocompatible scaffolds with built-in nanoplasmonic sensors
,”
Adv. Funct. Mater.
30
,
2005407
(
2020
).

Supplementary Material

You do not currently have access to this content.