To determine crystal anisotropy effects at high stresses, peak states behind the plastic shock waves were examined in BCC single crystals. Using plate impact experiments, molybdenum (Mo) single crystals were shock compressed up to 190 GPa elastic impact stress along [100], [110], and [111] orientations. Laser interferometry was used to measure wave velocities and particle velocity profiles at the Mo–LiF window interface. These data were analyzed to obtain in-material quantities in the peak states. The Hugoniots for [100] and [110] orientations were comparable, but the Hugoniot for the [111] orientation was different from the other two orientations. Also, these Mo single crystal Hugoniots display differences from the polycrystalline Mo Hugoniots. Although none of the differences can be considered large, the present results demonstrate that, unlike FCC metal single crystals (Cu, Al), some anisotropy is preserved in Mo single crystal Hugoniots even at high stresses.

1.
O. E.
Jones
and
J. D.
Mote
, “
Shock-induced dynamic yielding in copper single crystals
,”
J. Appl. Phys.
40
,
4920
(
1969
).
2.
W. J.
Murri
and
G. D.
Anderson
, “
Hugoniot elastic limit of single-crystal sodium chloride
,”
J. Appl. Phys.
41
,
3521
(
1970
).
3.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Duvall
,
M. H.
Miles
, and
R. F.
Tinder
, “
Effects of point defects on elastic precursor decay in LiF
,”
J. Appl. Phys.
43
,
2132
(
1972
).
4.
Y. M.
Gupta
, “
Elastic compression to 30 kbar along 111 in shocked LiF
,”
Appl. Phys. Lett.
26
,
38
(
1975
).
5.
L. E.
Pope
and
J. N.
Johnson
, “
Shock-wave compression of single-crystal beryllium
,”
J. Appl. Phys.
46
,
720
(
1975
).
6.
Y. M.
Gupta
, “
Effect of crystal orientation on dynamic strength of LiF
,”
J. Appl. Phys.
48
,
5067
(
1977
).
7.
G. I.
Kanel
and
S. V.
Razorenov
, “
Anomalies in the temperature dependences of the bulk and shear strength of aluminum single crystals in the submicrosecond range
,”
Phys. Solid State
43
,
871
(
2001
).
8.
H.
Huang
and
J. R.
Asay
, “
Reshock response of shock deformed aluminum
,”
J. Appl. Phys.
100
,
043514
(
2006
).
9.
G.
Whiteman
,
S.
Case
, and
J. C. F.
Millett
, “Planar shock compression of single crystal tantalum from 6–23 GPa,” in Journal of Physics: Conference Series (IOP Publishing, 2014), Vol. 500, p. 112067.
10.
J. M.
Winey
,
P.
Renganathan
, and
Y. M.
Gupta
, “
Shock wave compression and release of hexagonal-close-packed metal single crystals: Inelastic deformation of c-axis magnesium
,”
J. Appl. Phys.
117
,
105903
(
2015
).
11.
A.
Mandal
, “Elastic-plastic deformation of molybdenum single crystals shocked to 12.5 GPa,” Ph.D. thesis (Washington State University, School of Mechanical and Materials Engineering, 2016).
12.
P.
Renganathan
,
J. M.
Winey
, and
Y. M.
Gupta
, “
Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response
,”
J. Appl. Phys.
121
,
035901
(
2017
).
13.
A.
Mandal
and
Y. M.
Gupta
, “
Elastic-plastic deformation of molybdenum single crystals shocked along [100]
,”
J. Appl. Phys.
121
,
045903
(
2017
).
14.
A.
Mandal
and
Y. M.
Gupta
, “
Elastic-plastic deformation of molybdenum single crystals shocked to 12.5 GPa: Crystal anisotropy effects
,”
J. Appl. Phys.
125
,
055903
(
2019
).
15.
J.
Millett
,
P.
Avraam
,
G.
Whiteman
,
D.
Chapman
, and
S.
Case
, “
The role of orientation on the shock response of single crystal tantalum
,”
J. Appl. Phys.
128
,
035104
(
2020
).
16.
T.
Oniyama
,
Y. M.
Gupta
, and
G.
Ravichandran
, “
Shock compression of molybdenum single crystals to 110 GPa: Elastic-plastic deformation and crystal anisotropy
,”
J. Appl. Phys.
127
,
205902
(
2020
).
17.
S. P.
Marsh
,
LASL Shock Hugoniot Data
, Vol. 5 (
University of California Press
,
1980
).
18.
R.
Chau
,
J.
Stölken
,
P.
Asoka-Kumar
,
M.
Kumar
, and
N. C.
Holmes
, “
Shock Hugoniot of single crystal copper
,”
J. Appl. Phys.
107
,
023506
(
2010
).
19.
D.
Choudhuri
and
Y. M.
Gupta
, “
Shock compression of aluminum single crystals to 70 GPa: Role of crystalline anisotropy
,”
J. Appl. Phys.
114
,
153504
(
2013
).
20.
A. C.
Mitchell
and
W. J.
Nellis
, “
Shock compression of aluminum, copper, and tantalum
,”
J. Appl. Phys.
52
,
3363
(
1981
).
21.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
22.
L. M.
Barker
and
K. W.
Schuler
, “
Correction to the velocity-per-fringe relationship for the VISAR interferometer
,”
J. Appl. Phys.
45
,
3692
(
1974
).
23.
D. H.
Dolan
, “Foundations of VISAR analysis,” Sandia National Laboratories Report No. SAND2006–1950, 2006.
24.
D.
Choudhuri
and
Y. M.
Gupta
, “Shock compression and unloading response of 1050 aluminum to 70 GPA,” AIP Conf. Proc. 1426, 755 (2012).
25.
M. D.
Knudson
and
M. P.
Desjarlais
, “
Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime
,”
Phys. Rev. B
88
,
184107
(
2013
).
26.
P. A.
Rigg
,
M. D.
Knudson
,
R. J.
Scharff
, and
R. S.
Hixson
, “
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
,”
J. Appl. Phys.
116
,
033515
(
2014
).
27.
R. S.
Hixson
and
J. N.
Fritz
, “
Shock compression of tungsten and molybdenum
,”
J. Appl. Phys.
71
,
1721
(
1992
).
You do not currently have access to this content.