In this paper, evanescent surface waves propagating in a one-dimensional surface phononic crystal are investigated. The phononic crystal consists of elastic pillars periodically arranged on a viscoelastic substrate. By using the finite element method, the complex band structures and transmission spectra of surface waves are calculated. It is found that the evanescent wave with π phase change of the real part lies inside the resonant bandgap, and no cusp is observed for the minimum imaginary part. With the increase of frequency, the surface waves can be gradually converted to bulk waves. When the pillar height is increased, the generation mechanism of the first bandgap gradually varies from Bragg scattering to local resonance, and the evanescent waves above the sound line can be reconstructed and shifted below the sound line. When the viscosity is introduced, the minimum imaginary part inside the bandgap decreases. However, the corresponding attenuation is strengthened because the contribution of the bulk wave to the transmission gets weak. The work in this paper is relevant to the practical application of surface waves.

1.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
,
Phys. Rev. Lett.
71
,
2022
(
1993
).
2.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
3.
S.
Brûlé
,
E. H.
Javelaud
,
S.
Enoch
, and
S.
Guenneau
,
Phys. Rev. Lett.
112
,
133901
(
2014
).
4.
M.
Inaba
,
T.
Omori
, and
K.-Y.
Hashimoto
,
J. Appl. Phys.
52
,
07HD05
(
2013
).
5.
Lord Rayleigh
,
Proc. London Math. Soc.
s1–17
,
4
(
1885
).
6.
Y.
Tanaka
and
S. I.
Tamura
,
Phys. Rev. B
60
,
13294
(
1999
).
7.
V.
Laude
,
M.
Wilm
,
S.
Benchabane
, and
A.
Khelif
,
Phys. Rev. E
71
,
036607
(
2005
).
8.
S.
Benchabane
,
A.
Khelif
,
J.-Y.
Rauch
,
L.
Robert
, and
V.
Laude
,
Phys. Rev. E
73
,
065601
(
2006
).
9.
Z. Z.
Yan
and
Y. S.
Wang
,
Phys. Rev. B
78
,
094306
(
2008
).
10.
M. B.
Assouar
and
M.
Oudich
,
Appl. Phys. Lett.
99
,
123505
(
2011
).
11.
V.
Laude
and
M. E.
Korotyaeva
,
Phys. Rev. B
97
,
224110
(
2018
).
12.
A.
Khelif
,
Y.
Achaoui
,
S.
Benchabane
,
V.
Laude
, and
B.
Aoubiza
,
Phys. Rev. B
81
,
214303
(
2010
).
13.
Y.
Achaoui
,
A.
Khelif
,
S.
Benchabane
,
L.
Robert
, and
V.
Laude
,
Phys. Rev. B
83
,
104201
(
2011
).
14.
Y.
Zeng
,
Y.
Xu
,
K.
Deng
,
Z.
Zeng
,
H.
Yang
,
M.
Muzamil
, and
Q.
Du
,
J. Appl. Phys.
123
,
214901
(
2018
).
15.
A.
Colombi
,
P.
Roux
,
S.
Guenneau
,
P.
Gueguen
, and
R. V.
Craster
,
Sci. Rep.
6
,
19238
(
2016
).
16.
A. A.
Maznev
,
Phys. Rev. B
78
,
155323
(
2008
).
17.
E. J. P.
Miranda
and
J. M. C.
Dos Santos
,
Mech. Syst. Signal Process.
112
,
280
(
2018
).
18.
V.
Laude
,
Y.
Achaoui
,
S.
Benchabane
, and
A.
Khelif
,
Phys. Rev. B
80
,
092301
(
2009
).
19.
I. A.
Veres
and
T.
Berer
,
Phys. Rev. B
86
,
104304
(
2012
).
20.
V.
Romero-Garcfa
,
J. V.
Sanchez-Perez
, and
L. M.
Garcia-Raffi
,
Appl. Phys. Lett.
96
,
124102
(
2010
).
21.
X.
Ao
and
C. T.
Chan
,
Phys. Rev. B
80
,
235118
(
2009
).
22.
M. I.
Hussein
,
Phys. Rev. B
80
,
212301
(
2009
).
23.
M. I.
Hussein
and
M. J.
Frazie
,
J. Appl. Phys.
108
,
093506
(
2010
).
24.
J.
Lou
,
L.
He
,
J.
Yang
,
S.
Kitipornchai
, and
H.
Wu
,
Appl. Acoust.
141
,
382
(
2018
).
25.
M. A.
Lewińska
,
V. G.
Kouznetsova
,
J. A. W.
Dommelen
,
A. O.
Krushynska
, and
M. G. D.
Geers
,
Int. J. Solids Struct.
126–127
,
163
174
(
2017
).
26.
Y. P.
Zhao
and
P. J.
Wei
,
Comput. Mater. Sci.
46
,
603
(
2009
).
27.
A. O.
Krushynska
,
V. G.
Kouznetsova
, and
M. G. D.
Geers
,
J. Mech. Phys. Solids
96
,
29
(
2016
).
28.
R. P.
Moiseyenko
and
V.
Laude
,
Phys. Rev. B
83
,
064301
(
2011
).
29.
S.
Mei
,
Z.
Guo
,
Q.
Qin
, and
Y.
He
,
Compos. Struct.
206
,
54
69
(
2018
).
30.
Y. F.
Wang
,
J. W.
Liang
,
A. L.
Chen
,
Y. S.
Wang
, and
V.
Laude
,
Phys. Rev. B
101
,
184301
(
2020
).
31.
Y. F.
Wang
,
Y. S.
Wang
, and
V.
Laude
,
Phys. Rev. B
92
,
104110
(
2015
).
32.
W.
Chew
and
Q.
Liu
,
J. Comput. Acoust.
04
,
341
(
1996
).
33.
B.
Graczykowski
,
F.
Alzina
,
J.
Gomis-Bresco
, and
C. M.
Sotomayor Torres
,
J. Appl. Phys.
119
,
025308
(
2016
).
34.
J.
Huang
,
W.
Liu
, and
Z.
Shi
,
Constr. Build. Mater.
141
,
1
(
2017
).
35.
Y.
Liu
,
A.
Talbi
,
B.
Djafari-Rouhani
,
E. H.
El Boudouti
,
L.
Drbohlavová
,
V.
Mortet
,
O. B.
Matar
, and
P.
Pernod
,
Phys. Lett. A
383
,
1502
(
2019
).
37.
V.
Laude
,
J. M.
Escalante
, and
A.
Martínez
,
Phys. Rev. B
88
,
224302
(
2013
).
38.
Y.
Guo
,
M.
Schubert
, and
T.
Dekorsy
,
J. Appl. Phys.
119
,
124302
(
2016
).
39.
Y.
Tanaka
and
S.-I.
Tamura
,
Phys. Rev. B
58
,
7958
(
1998
).
40.
T. T.
Wu
,
Z. G.
Huang
, and
S.
Lin
,
Phys. Rev. B
69
,
094301
(
2004
).
41.
A.
Colombi
,
P.
Roux
,
S.
Guenneau
,
P.
Gueguen
, and
R. V.
Craster
,
Sci. Rep.
6
,
19238
(
2016
).
42.
T.
Li
,
Q.
Su
, and
S.
Kaewunruen
,
Constr. Build. Mater.
260
,
119936
(
2020
).
43.
O.
Casablanca
,
G.
Ventura
,
F.
Garescì
,
B.
Azzerboni
,
B.
Chiaia
,
M.
Chiappini
,
G.
Finocchio
, and
J.
Finocchio
,
J. Appl. Phys.
123
,
174903
(
2018
).
44.
B.
Ash
,
A. R.
Rezk
,
L. Y.
Yeo
, and
G. R.
Nash
,
Appl. Phys. Lett.
118
,
013502
(
2021
).
You do not currently have access to this content.