An improved plane wave expansion (PWE) method is developed based on the governing equations of a lattice unit cell, providing support for calculating the band structures of a locally resonant (LR) plate with multiple arrays of multiple degree-of-freedom resonators. The extended plane wave expansion (EPWE) method is correspondingly presented to obtain the complex band structures of the LR plate. Then the bandgap properties of LR plate systems with single/multiple arrays of single/multiple degree-of-freedom resonators are analyzed, which present a good agreement with the results calculated by the classical theory or finite element method. Compared with the classical theory, the improved PWE and EPWE methods have excellent efficiency and broad applicability for LR plate systems with complex attachments. Furthermore, when the damping of resonators is taken into account, the merging of the multiple bandgaps can be observed using the EPWE method adopted in this paper, which gives a useful tool to analyze the band structures of an LR plate with merged bandgaps for broadband vibration suppression.

1.
R.
Chaunsali
,
C.-W.
Chen
, and
J.
Yang
, “
Subwavelength and directional control of flexural waves in zone-folding induced topological plates
,”
Phys. Rev. B
97
,
054307
(
2018
).
2.
C.
Claeys
,
N. G.
Rocha de Melo Filho
,
L.
Van Belle
,
E.
Deckers
, and
W.
Desmet
, “
Design and validation of metamaterials for multiple structural stop bands in waveguides
,”
Extreme Mech. Lett.
12
,
7
22
(
2017
).
3.
P. D. C.
King
and
T. J.
Cox
, “
Acoustic band gaps in periodically and quasiperiodically modulated waveguides
,”
J. Appl. Phys.
102
,
014902
(
2007
).
4.
D.
Torrent
,
D.
Mayou
, and
J.
Sánchez-Dehesa
, “
Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates
,”
Phys. Rev. B
87
,
115143
(
2013
).
5.
J.
Jung
,
C.-H.
Jeong
, and
J. S.
Jensen
, “
Efficient sound radiation using a bandgap structure
,”
Appl. Phys. Lett.
115
,
041903
(
2019
).
6.
J.
Jung
,
C.-H.
Jeong
, and
J. S.
Jensen
, “
Spectrally smooth and spatially uniform sound radiation from a thin plate structure using band gaps
,”
J. Sound Vib.
471
,
115187
(
2020
).
7.
M.
Farooqui
,
T.
Elnady
, and
W.
Akl
, “
Validation of low frequency noise attenuation using locally resonant patches
,”
J. Acoust. Soc. Am.
139
,
3267
3276
(
2016
).
8.
W.
Elmadih
,
D.
Chronopoulos
,
W. P.
Syam
,
I.
Maskery
,
H.
Meng
, and
R. K.
Leach
, “
Three-dimensional resonating metamaterials for low-frequency vibration attenuation
,”
Sci. Rep.
9
,
11503
(
2019
).
9.
J.
Jung
,
H.-G.
Kim
,
S.
Goo
,
K.-J.
Chang
, and
S.
Wang
, “
Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation
,”
Mech. Syst. Signal Process.
122
,
206
231
(
2019
).
10.
S.
Das
,
K.
Dwivedi
,
S.
Rajasekharan
, and
D. R.
Yendluri
, “
Vibration attenuation and bandgap characteristics in plates with periodic cavities
,”
J. Vib. Control
21
,
827
838
(
2020
).
11.
S.
Zhang
,
J.
Hui Wu
, and
Z.
Hu
, “
Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators
,”
J. Appl. Phys.
113
,
163511
(
2013
).
12.
Q.
Qin
,
M.
Sheng
, and
Z.
Guo
, “
Low-frequency vibration and radiation performance of a locally resonant plate attached with periodic multiple resonators
,”
Appl. Sci.
10
,
2843
(
2020
).
13.
Y.
Xiao
,
J.
Wen
, and
X.
Wen
, “
Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators
,”
New J. Phys.
14
,
033042
(
2012
).
14.
D.
Yu
,
Y.
Liu
,
G.
Wang
,
L.
Cai
, and
J.
Qiu
, “
Low frequency torsional vibration gaps in the shaft with locally resonant structures
,”
Phys. Lett. A
348
,
410
415
(
2006
).
15.
D.
Yu
,
Y.
Liu
,
G.
Wang
,
H.
Zhao
, and
J.
Qiu
, “
Flexural vibration band gaps in Timoshenko beams with locally resonant structures
,”
J. Appl. Phys.
100
,
124901
(
2006
).
16.
Y.
Liu
,
D.
Yu
,
L.
Li
,
H.
Zhao
,
J.
Wen
, and
X.
Wen
, “
Design guidelines for flexural wave attenuation of slender beams with local resonators
,”
Phys. Lett. A
362
,
344
347
(
2007
).
17.
A.
Banerjee
, “
Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators
,”
Meccanica
55
,
1181
1191
(
2020
).
18.
Y.
Xiao
,
J.
Wen
, and
X.
Wen
, “
Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators
,”
J. Phys. D: Appl. Phys.
45
,
195401
(
2012
).
19.
D.
Qian
and
Z.
Shi
, “
Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators
,”
Phys. Lett. A
380
,
3319
3325
(
2016
).
20.
Z.
Liu
,
R.
Rumpler
, and
L.
Feng
, “
Investigation of the sound transmission through a locally resonant metamaterial cylindrical shell in the ring frequency region
,”
J. Appl. Phys.
125
,
115105
(
2019
).
21.
Z.
Tong
,
X.
Qi
, and
L.
Li
, “
A method for considering a distributed spring constant for studying the flexural vibration of an Euler-beam with lightweight multistage local resonators
,”
J. Vibroeng.
20
,
2563
2575
(
2018
).
22.
T.
Wang
,
M.-P.
Sheng
, and
Q.-H.
Qin
, “
Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
,”
Phys. Lett. A
380
,
525
529
(
2016
).
23.
J.
Ma
,
M.
Sheng
,
Z.
Guo
, and
Q.
Qin
, “
Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators
,”
J. Sound Vib.
424
,
94
111
(
2018
).
24.
Z.
Wu
,
W.
Liu
,
F.
Li
, and
C.
Zhang
, “
Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators
,”
Mech. Syst. Signal Process.
134
,
106357
(
2019
).
25.
X.
Wang
and
M. Y.
Wang
, “
An analysis of flexural wave band gaps of locally resonant beams with continuum beam resonators
,”
Meccanica
51
,
171
178
(
2016
).
26.
J.
Jung
,
S.
Goo
, and
S.
Wang
, “
Investigation of flexural wave band gaps in a locally resonant metamaterial with plate-like resonators
,”
Wave Motion
93
,
102492
(
2020
).
27.
K.
Lu
,
G.
Zhou
,
N.
Gao
,
L.
Li
,
H.
Lei
, and
M.
Yu
, “
Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators
,”
Appl. Acoust.
159
,
107115
(
2020
).
28.
Z.
Shuguang
,
N.
Tianxin
,
W.
Xudong
, and
F.
Jialu
, “
Studies of band gaps in flexural vibrations of a locally resonant beam with novel multi-oscillator configuration
,”
J. Vib. Control
23
,
1663
1674
(
2017
).
29.
S.
El-Borgi
,
R.
Fernandes
,
P.
Rajendran
,
R.
Yazbeck
,
J. G.
Boyd
, and
D. C.
Lagoudas
, “
Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments
,”
J. Sound Vib.
488
,
115647
(
2020
).
30.
Y.
Xiao
,
J.
Wen
, and
X.
Wen
, “
Broadband locally resonant beams containing multiple periodic arrays of attached resonators
,”
Phys. Lett. A
376
,
1384
1390
(
2012
).
31.
E. J. P.
Miranda
, Jr.
, and
J. M. C.
Dos Santos
, “
Flexural wave band gaps in multi-resonator elastic metamaterial Timoshenko beams
,”
Wave Motion
91
,
102391
(
2019
).
32.
G.
Hu
,
A. C. M.
Austin
,
V.
Sorokin
, and
L.
Tang
, “
Metamaterial beam with graded local resonators for broadband vibration suppression
,”
Mech. Syst. Signal Process.
146
,
106982
(
2021
).
33.
E. J. P.
Miranda
,
E. D.
Nobrega
,
A. H. R.
Ferreira
, and
J. M. C.
Dos Santos
, “
Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory
,”
Mech. Syst. Signal Process.
116
,
480
504
(
2019
).
34.
Q.
Qin
and
M.-P.
Sheng
, “
Analyses of multi-bandgap property of a locally resonant plate composed of periodic resonant subsystems
,”
Int. J. Mod. Phys. B
32
,
1850269
(
2018
).
You do not currently have access to this content.