We demonstrate that large apparent converse flexoelectric properties can be obtained in piezoelectric composites using theoretical approaches. To do so, we first present a numerical homogenization method accounting for all electromechanical terms related to strain and the electric field gradient. We then evaluate the coefficients of the model by numerical simulations on periodic piezoelectric composites. After combining the homogenization approach with topology optimization to enhance the converse properties of the composite, we present numerical results that reveal that the apparent converse flexoelectric coefficients, as well as those associated with the higher order coupling terms involving the electric field gradient, are of the same order as the direct flexoelectric properties of the local constituents. These results suggest that both converse and higher order electromechanical coupling effects may contribute strongly to the flexoelectric response and properties of piezoelectric composites. Finally, we show that it is theoretically possible to obtain optimized designs of composites with apparent converse flexoelectric properties 1–2 orders of magnitude larger than ones obtained with naïve guess designs.

1.
L.
Cross
, “
Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients
,”
J. Mater. Sci.
41
(
1
),
53
63
(
2006
).
2.
J. Y.
Fu
,
W.
Zhu
,
N.
Li
, and
L.
Cross
, “
Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition
,”
J. Appl. Phys.
100
(
2
),
024112
(
2006
).
3.
W.
Ma
and
L.
Cross
, “
Flexoelectric polarization of barium strontium titanate in the paraelectric state
,”
Appl. Phys. Lett.
81
(
18
),
3440
3442
(
2002
).
4.
G.
Zubko
,
A.
Catalan
,
P.
Buckley
,
L.
Welche
, and
J.
Scott
, “
Strain-gradient induced polarization in SrTiO3 single crystals
,”
Phys. Rev. Lett.
99
(
16
),
167601
(
2007
).
5.
W.
Ma
and
L.
Cross
, “
Strain-gradient induced electric polarization in lead zirconate titanate ceramics
,”
Appl. Phys. Lett.
82
(
19
),
3923
3925
(
2003
).
6.
B.
Chu
and
D.
Salem
, “
Flexoelectricity in several thermoplastic and thermosetting polymers
,”
Appl. Phys. Lett.
101
,
103905
(
2012
).
7.
P.
Zubko
,
G.
Catalan
, and
A.
Tagantsev
, “
Flexoelectric effect in solids
,”
Annu. Rev. Mater. Res.
43
,
387
(
2013
).
8.
Q.
Deng
,
L.
Liu
, and
P.
Sharma
, “
Flexoelectricity in soft materials and biological membranes
,”
J. Mech. Phys. Solids
62
,
209
227
(
2014
).
9.
S.
Kogan
, “
Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals
,”
Sov. Phys. Solid State
5
(
10
),
2069
(
1964
).
10.
A. K.
Tagantsev
, “
Theory of flexoelectric effect in crystals
,”
Sov. Phys. JETP
61
(6), 1246–1254 (1985).
11.
N.
Sharma
,
C.
Landis
, and
P.
Sharma
, “
Piezoelectric thin-film superlattices without using piezoelectric materials
,”
J. Appl. Phys.
108
,
024304
(
2010
).
12.
J.
Fousek
,
L.
Cross
, and
D.
Litvin
, “
Possible piezoelectric composites based on the flexoelectric effect
,”
Mater. Lett.
39
,
287
291
(
1999
).
13.
U. K.
Bhaskar
,
N.
Banerjee
,
A.
Abdollahi
,
Z.
Wang
,
D. G.
Schlom
,
G.
Rijnders
, and
G.
Catalan
, “
A flexoelectric microelectromechanical system on silicon
,”
Nat. Nanotechnol.
11
,
263
266
(
2016
).
14.
R.
Maranganti
,
N.
Sharma
, and
P.
Sharma
, “
Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Greens function solutions and embedded inclusions
,”
Phys. Rev. B
74
,
014110
(
2006
).
15.
N.
Sharma
,
R.
Maraganti
, and
P.
Sharma
, “
On the possibility of piezoelectric nanocomposites without using piezoelectric materials
,”
J. Mech. Phys. Solids
55
,
2328
2350
(
2007
).
16.
M.
Majdoub
,
P.
Sharma
, and
T.
Cagin
, “
Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect
,”
Phys. Rev. B
77
,
125424
(
2008
).
17.
Q.
Deng
,
M.
Kammoun
,
A.
Erturk
, and
P.
Sharma
, “
Nanoscale flexoelectric energy harvesting
,”
Int. J. Solids Struct.
51
,
3218
3225
(
2014
).
18.
X.
Liang
,
R.
Zhang
,
S.
Hu
, and
S.
Shen
, “
Flexoelectric energy harvesters based on Timoshenko laminated beam theory
,”
J. Intell. Mater. Syst. Struct.
28
,
2064
2073
(
2017
).
19.
W.
Huang
,
X.
Yan
,
S. R.
Kwon
,
S.
Zhang
,
F.-G.
Yuan
, and
X.
Jiang
, “
Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing
,”
Appl. Phys. Lett.
101
,
252903
(
2012
).
20.
J.
Yvonnet
,
X.
Chen
, and
P.
Sharma
, “
Apparent flexoelectricity due to heterogeneous piezoelectricity
,”
J. Appl. Mech.
87
,
1
31
(
2020
).
21.
Y.
Wang
,
Y.
Tang
,
Y.
Zhu
,
Y.
Feng
, and
X.
Ma
, “
Converse flexoelectricity around ferroelectric domain walls
,”
Acta Mater.
191
,
158
165
(
2020
).
22.
X.
Tian
,
M.
Xu
,
Q.
Deng
,
J.
Sladek
,
V.
Sladek
,
M.
Repka
, and
Q.
Li
, “
Size-dependent direct and converse flexoelectricity around a micro-hole
,”
Acta Mech.
231
,
4851
4865
(
2020
).
23.
A.
Abdollahi
,
N.
Domingo
,
I.
Arias
, and
G.
Catalan
, “
Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials
,”
Nat. Commun.
10
,
1
6
(
2019
).
24.
S.
Zhang
,
K.
Liu
,
X.
Wen
,
T.
Wu
,
M.
Xu
, and
S.
Shen
, “
Converse flexoelectricity with relative permittivity gradient
,”
Appl. Phys. Lett.
114
,
052903
(
2019
).
25.
Z.
Shen
and
W.
Chen
, “
Converse flexoelectric effect in comb electrode piezoelectric microbeam
,”
Phys. Lett. A
376
,
1661
1663
(
2012
).
26.
L.
Shu
,
W.
Huang
,
S.
Ryung Kwon
,
Z.
Wang
,
F.
Li
,
X.
Wei
,
S.
Zhang
,
M.
Lanagan
,
X.
Yao
, and
X.
Jiang
, “
Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3
,”
Appl. Phys. Lett.
104
,
232902
(
2014
).
27.
L.
Shu
,
F.
Li
,
W.
Huang
,
X.
Wei
,
X.
Yao
, and
X.
Jiang
, “
Relationship between direct and converse flexoelectric coefficients
,”
J. Appl. Phys.
116
,
144105
(
2014
).
28.
E.
Bursian
and
O.I.
Zaikovskii
, “
Changes in curvature of a ferroelectric film due to polarization
,”
Sov. Phys. Solid State, USSR
10
,
1121
(
1968
).
29.
W.
Zhu
,
J. Y.
Fu
,
N.
Li
, and
L.
Cross
, “
Piezoelectric composite based on the enhanced flexoelectric effects
,”
Appl. Phys. Lett.
89
,
192904
(
2006
).
30.
N.
Mawassy
,
H.
Reda
,
J.-F.
Ganghoffer
,
V.
Eremeyev
, and
H.
Lakiss
, “
A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media
,”
Int. J. Eng. Sci.
158
,
103410
(
2021
).
31.
B.
Wang
,
Y.
Gu
,
S.
Zhang
, and
L.-Q.
Chen
, “
Flexoelectricity in solids: Progress, challenges, and perspectives
,”
Prog. Mater. Sci.
106
,
100570
(
2019
).
32.
J.
Yvonnet
,
N.
Auffray
, and
V.
Monchiet
, “
Computational second-order homogenization of materials with effective anisotropic strain gradient behavior
,”
Int. J. Solids Struct.
191–192
,
434
448
(
2020
).
33.
S.
Sidhardh
and
M.
Ray
, “
Exact solutions for flexoelectric response in elastic dielectric nanobeams considering generalized constitutive gradient theories
,”
Int. J. Mech. Mater. Des.
15
,
427
446
(
2019
).
34.
M.
Gologanu
,
J.-B.
Leblond
,
G.
Perrin
, and
J.
Devaux
, “Recent extensions of Gurson’s model for porous ductile metals,” in Continuum Micromechanics (Springer, 1997), pp. 61–130.
35.
S.
Forest
, “
Mechanics of generalized continua: Construction by homogenizaton
,”
J. Phys. IV
8
,
Pr4
Pr39
(
1998
).
36.
X.
Chen
,
J.
Yvonnet
,
S.
Yao
, and
H.
Park
, “
Topology optimization of flexoelectric composites using computational homogenization
,”
Comput. Methods Appl. Mech. Eng.
381
,
113819
(
2021
).
37.
V.
Monchiet
,
N.
Auffray
, and
J.
Yvonnet
, “
Strain-gradient homogenization: A bridge between asymptotic expansion and quadratic boundary condition methods
,”
Mech. Mater.
143
,
103309
(
2020
).
38.
L.
Kaczmarczyk
,
C.
Pearce
, and
N.
Bićanić
, “
Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization
,”
Int. J. Numer. Methods Eng.
74
,
506
522
(
2008
).
39.
L.
Liu
, “
An energy formulation of continuum magneto-electro-elasticity with applications
,”
J. Mech. Phys. Solids
63
,
451
480
(
2014
).
40.
J.
Yvonnet
and
L.
Liu
, “
A numerical framework for modeling flexoelectricity and Maxwell stress in soft dielectrics at finite strains
,”
Comput. Methods Appl. Mech. Eng.
313
,
450
482
(
2017
).
41.
X.
Lu
,
D.
Giovanis
,
J.
Yvonnet
,
V.
Papadopoulos
,
F.
Detrez
, and
J.
Bai
, “
A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
,”
Comput. Mech.
64
,
307
321
(
2019
).
42.
B.
Le
,
J.
Yvonnet
and
Q.-C.
HE
, “
Computational homogenization of nonlinear elastic materials using neural networks
,”
Int. J. Numer. Methods Eng.
104
,
1061
1084
(
2015
).
43.
M. P.
Bendsøe
, “
Optimal shape design as a material distribution problem
,”
Struct. Optim.
1
,
193
202
(
1989
).
44.
G. I.
Rozvany
,
M.
Zhou
, and
T.
Birker
, “
Generalized shape optimization without homogenization
,”
Struct. Optim.
4
,
250
252
(
1992
).
45.
M. P.
Bendsøe
and
O.
Sigmund
, “
Material interpolation schemes in topology optimization
,”
Arch. Appl. Mech.
69
,
635
654
(
1999
).
46.
V.
Komkov
,
K.
Choi
, and
E.
Haug
,
Design Sensitivity Analysis of Structural Systems
, Mathematics in Science and Engineering (
Elsevier Science
,
1986
).
47.
M. P.
Bendsøe
and
O.
Sigmund
,
Topology Optimization: Theory, Methods, and Applications
, 2nd ed. (
Springer
,
2013
), p.
381
.
48.
K.
Svanberg
, “
A class of globally convergent optimization methods based on conservative convex separable approximations
,”
SIAM J. Optim.
12
,
555
573
(
2002
).
49.
E.
Pettermann
and
S.
Suresh
, “
A comprehensive unit cell model: A study of coupled effects in piezoelectric 1–3 composites
,”
Int. J. Solids Struct.
37
,
5447
5464
(
2000
).
50.
R.
Brenner
, “
Numerical computation of the response of piezoelectric composites using Fourier transform
,”
Phys. Rev. B
79
,
184106
(
2009
).
51.
K. S.
Ramadan
,
D.
Sameoto
, and
S.
Evoy
, “
A review of piezoelectric polymers as functional materials for electromechanical transducers
,”
Smart Mater. Struct.
23
,
033001
(
2014
).

Supplementary Material

You do not currently have access to this content.