Tip-force-induced domain switching in ferroelectrics has recently attracted extensive interest as it provides an alternative switching strategy that might ease the problems brought by electrical switching. From the viewpoint of mechanics, substrate elasticity can largely modify the tip-induced deformation of ferroelectric thin films. However, so far, discussions on the influence of substrate elastic properties on such domain switching still remain exclusive. Here, a phase-field model is employed to study the influence of substrate stiffness on the domain switching in BaTiO3 (BTO) thin films, with the strain and stress distributions in BTO thin films and substrates solved by the finite element method. The results demonstrate that the substrate stiffness and loading modes (i.e., pressing and sliding) have a great influence on the symmetry of strain and stress distributions. The switched domain size is highly dependent on the substrate stiffness and loading modes. The switching is more efficient for thin films on a softer substrate. Moreover, the domain could be switched more effectively by the sliding mode under relatively large forces. Our study thus provides a strategy to increase the mechanical switching efficiency of ferroelectric thin films via tuning the substrate elasticity.

1.
J. F.
Scott
and
C. A.
Paz de Araujo
, “
Ferroelectric memories
,”
Science
246
,
1400
1405
(
1989
).
2.
D.
Damjanovic
, “
Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
,”
Rep. Prog. Phys.
61
,
1267
(
1998
).
3.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
, “
Physics of thin-film ferroelectric oxides
,”
Rev. Mod. Phys.
77
,
1083
(
2005
).
4.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
,
M.
Bibes
,
A.
Barthélémy
, and
J.
Grollier
, “
A ferroelectric memristor
,”
Nat. Mater.
11
,
860
(
2012
).
5.
D.
Li
and
D. A.
Bonnell
, “
Controlled patterning of ferroelectric domains: Fundamental concepts and applications
,”
Annu. Rev. Mater. Res.
38
,
351
368
(
2008
).
6.
S.
Boyn
,
J.
Grollier
,
G.
Lecerf
,
B.
Xu
,
N.
Locatelli
,
S.
Fusil
,
S.
Girod
,
C.
Carrétéro
,
K.
Garcia
,
S.
Xavier
 et al, “
Learning through ferroelectric domain dynamics in solid-state synapses
,”
Nat. Commun.
8
,
14736
(
2017
).
7.
Y.
Ehara
,
S.
Yasui
,
T.
Oikawa
,
T.
Shiraishi
,
T.
Shimizu
,
H.
Tanaka
,
N.
Kanenko
,
R.
Maran
,
T.
Yamada
,
Y.
Imai
,
O.
Sakata
,
N.
Valanoor
, and
H.
Funakubo
, “
In-situ observation of ultrafast 90° domain switching under application of an electric field in (100)/(001)-oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films
,”
Sci. Rep.
7
,
9641
(
2017
).
8.
H. M.
Duiker
,
P. D.
Beale
, and
J. F.
Scott
, “
Fatigue and switching in ferroelectric memories: Theory and experiment
,”
J. Appl. Phys.
68
,
5783
(
1990
).
9.
A. K.
Tagantsev
,
I.
Stolichnov
,
E. L.
Colla
, and
N.
Setter
, “
Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features
,”
J. Appl. Phys.
90
,
1387
(
2001
).
10.
H.
Lu
,
C. W.
Bark
,
D.
Esque de los Ojos
,
J.
Alcala
,
C. B.
Eom
,
G.
Catalan
, and
A.
Gruverman
, “
Mechanical writing of ferroelectric polarization
,”
Science
336
,
59
(
2012
).
11.
Y.
Deng
,
R.
Zhang
,
T. C.
Pekin
,
C.
Gammer
,
J.
Ciston
,
P.
Ercius
,
C.
Ophus
,
K.
Bustillo
,
C.
Song
,
S.
Zhao
,
H.
Guo
,
Y.
Zhao
,
H.
Dong
,
Z.
Chen
, and
A. M.
Minor
, “
Functional materials under stress: In situ TEM observations of structural evolution
,”
Adv. Mater.
32
,
1906105
(
2019
).
12.
Z.
Wen
,
X.
Qiu
,
C.
Li
,
C.
Zheng
,
X.
Ge
,
A.
Li
, and
D.
Wu
, “
Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: The effects of epitaxial strain
,”
Appl. Phys. Lett.
104
,
042907
(
2014
).
13.
E. J.
Guo
,
R.
Roth
,
S.
Das
, and
K.
Dörr
, “
Strain induced low mechanical switching force in ultrathin PbZr0.2Ti0.8O3 films
,”
Appl. Phys. Lett.
105
,
012903
(
2014
).
14.
R.
Cai
,
B.
Nysten
,
Z.
Hu
, and
A. M.
Jonas
, “
Local polarization switching in stressed ferroelectric polymers
,”
Appl. Phys. Lett.
110
,
202901
(
2017
).
15.
L. L.
Ma
,
W. J.
Chen
,
Y. L.
Liu
,
B.
Wang
, and
Y.
Zheng
, “
On the mechanisms of tip-force induced switching in ferroelectric thin films: The crossover of depolarization, shear strain and flexoelectricity
,”
J. Phys.: Condens. Matter
31
,
145701
(
2019
).
16.
Y.
Gu
,
Z.
Hong
,
J.
Britson
, and
L. Q.
Chen
, “
Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity
,”
Appl. Phys. Lett.
106
,
022904
(
2015
).
17.
Y.
Cao
,
A.
Morozovska
, and
S. V.
Kalinin
, “
Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics
,”
Phys. Rev. B.
96
,
184109
(
2017
).
18.
W. J.
Chen
,
S.
Yuan
,
L. L.
Ma
,
Y.
Ji
,
B.
Wang
, and
Y.
Zheng
, “
Mechanical switching in ferroelectrics by shear stress and its implications on charged domain wall generation and vortex memory devices
,”
RSC Adv.
8
,
4434
4444
(
2018
).
19.
S. M.
Park
,
B.
Wang
,
S.
Das
,
S. C.
Chae
,
J. S.
Chung
,
J. G.
Yoon
,
L. Q.
Chen
,
S. M.
Yang
, and
T. W.
Noh
, “
Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field
,”
Nat. Nanotechnol.
13
,
366
370
(
2018
).
20.
W.
Chen
,
J.
Liu
,
L.
Ma
,
L.
Liu
,
G. L.
Jiang
, and
Y.
Zheng
, “
Mechanical switching of ferroelectric domains beyond flexoelectricity
,”
J. Mech. Phys. Solids
111
,
43
66
(
2018
).
21.
B.
Wang
,
H.
Lu
,
C. W.
Bark
,
C.-B.
Eom
,
A.
Gruverman
, and
L.-Q.
Chen
, “
Mechanically induced ferroelectric switching in BaTiO3 thin films
,”
Acta Mater.
193
,
151
162
(
2020
).
22.
J.
Očenášek
,
H.
Lu
,
C. W.
Bark
,
C. B.
Eom
,
J.
Alcalá
,
G.
Catalan
, and
A.
Gruverman
, “
Nanomechanics of flexoelectric switching
,”
Phys. Rev. B
92
,
035417
(
2015
).
23.
W.
Xiong
,
Y.
Liu
,
L.
Ma
,
W.
Chen
, and
Y.
Zheng
, “
Tip-force-induced ultrafast polarization switching in ferroelectric thin film: A dynamical phase field simulation
,”
J. Appl. Phys.
128
,
014102
(
2020
).
24.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
, “
A phenomenological thermodynamic potential for BaTiO3 single crystals
,”
J. Appl. Phys.
98
,
064101
(
2005
).
25.
A. K.
Tagantsev
, “
Landau expansion for ferroelectrics: Which variable to use?
,”
Ferroelectrics
375
,
19
27
(
2008
).
26.
Y.
Zheng
and
C. H.
Woo
, “
Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale
,”
Appl. Phys. A
97
,
617
626
(
2009
).
27.
P. V.
Yudin
and
A. K.
Tagantsev
, “
Fundamentals of flexoelectricity in solids
,”
Nanotechnology
24
,
432001
(
2013
).
28.
P.
Zubko
,
G.
Catalan
, and
A. K.
Tagantsev
, “
Flexoelectric effect in solids
,”
Annu. Rev. Mater. Res.
43
,
387
421
(
2013
).
29.
S. M.
Kogan
, “
Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals
,”
Sov. Phys. Solid State
5
,
2069
(
1964
).
30.
R.
Kretschmer
and
K.
Binder
, “
Surface effects on phase transitions in ferroelectrics and dipolar magnets
,”
Phys. Rev. B
20
,
1065
(
1979
).
31.
M.
Mata
and
J.
Alcalá
, “
The role of friction on sharp indentation
,”
J. Mech. Phys. Solids
52
,
145
(
2004
).
32.
Y.
Mo
,
K. T.
Turner
, and
I.
Szlufarska
, “
Friction laws at the nanoscale
,”
Nature
457
,
1116
(
2009
).
33.
J.
Hlinka
and
P.
Márton
, “
Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics
,”
Phys. Rev. B
74
,
104104
(
2006
).

Supplementary Material

You do not currently have access to this content.