Flexoelectricity is an electromechanical phenomenon produced in a dielectric material, with or without centrosymmetric microstructure, undergoing a non-uniform strain. It is characterized by the fourth-order flexoelectric tensor, which links the electric polarization vector with the gradient of the second-order strain tensor. Our previous work [H. Le Quang and Q.-C. He, Proc. R. Soc. A 467, 2369 (2011)] solved the fundamental theoretical problem of determining the number and types of all rotational symmetries that the flexoelectric tensor can exhibit. In the present study, compact explicit matrix representations of the flexoelectric tensor are provided so as to facilitate the use of it with any possible rotational symmetry. The number and types of all reflection symmetries that the flexoelectric tensor can have are also determined. To identify the rotational symmetry and reflection symmetry of a given flexoelectric tensor, a simple and efficient graphic method based on the concept of pole figures is presented and illustrated.

1.
E. V.
Bursian
and
N. N.
Trunov
, “
Nonlocal piezoelectric effect
,”
Sol. Phys. Solid State
10
,
760
(
1974
).
2.
C.
Liu
,
S.
Hu
, and
S.
Shen
, “
Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire
,”
Smart Mater. Struct.
21
,
115024
(
2012
).
3.
T. D.
Nguyen
,
S.
Mao
,
Y.-W.
Yeh
,
P. K.
Purohit
, and
M. C.
McAlpine
, “
Nanoscale flexoelectricity
,”
Adv. Mater.
25
,
946
(
2013
).
4.
Z.
Yan
and
L. Y.
Jiang
, “
Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams
,”
J. Appl. Phys.
113
,
194103
(
2013
).
5.
G.
Catalan
,
L. J.
Sinnamon
, and
J. M.
Gregg
, “
The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films
,”
J. Phys.: Condens. Matter
16
,
2253
(
2004
).
6.
R. B.
Meyer
, “
Piezoelectric effects in liquid crystals
,”
Phys. Rev. Lett.
22
,
918
(
1969
).
7.
M.
Marvan
and
A.
Havranek
, “
Flexoelectric effect in elastomers
,”
Prog. Colloid Polym. Sci.
78
,
33
(
1988
).
8.
W.
Ma
and
L. E.
Cross
, “
Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics
,”
Appl. Phys. Lett.
78
,
2920
(
2001
).
9.
W.
Ma
and
L. E.
Cross
, “
Flexoelectric polarization of barium strontium titanate in the paraelectric state
,”
Appl. Phys. Lett.
81
,
3440
(
2002
).
10.
W.
Ma
and
L. E.
Cross
, “
Flexoelectricity of barium titanate
,”
Appl. Phys. Lett.
88
,
232902
(
2006
).
11.
P.
Zubko
,
G.
Catalan
,
P. R. L.
Welche
,
A.
Buckley
, and
J. F.
Scott
, “
Strain-gradient-induced polarization in SrTiO3 single crystals
,”
Phys. Rev. Lett.
99
,
167601
(
2007
).
12.
S. V.
Kalinin
and
V.
Meunier
, “
Electronic flexoelectricity in low-dimensional systems
,”
Phys. Rev. B
77
,
033403
(
2008
).
13.
I.
Naumov
,
A. M.
Bratkovsky
, and
V.
Ranjan
, “
Unusual flexoelectric effect in two-dimensional noncentrosymmetric sp2-bonded crystals
,”
Phys. Rev. Lett.
102
,
217601
(
2009
).
14.
S.
Zhang
,
X.
Liang
,
M.
Xu
,
B.
Feng
, and
S.
Shen
, “
Shear flexoelectric response along 3121 direction in polyvinylidene fluoride
,”
Appl. Phys. Lett.
107
,
142902
(
2015
).
15.
S.
Zhang
,
K.
Liu
,
M.
Xu
,
H.
Shen
,
K.
Chen
,
B.
Feng
, and
S.
Shen
, “
Investigation of the 2312 flexoelectric coefficient component of polyvinylidene fluoride: Deduction, simulation, and mensuration
,”
Sci. Rep.
7
,
3134
(
2017
).
16.
B.
Chu
and
D. R.
Salem
, “
Flexoelectricity in several thermoplastic and thermosetting polymers
,”
Appl. Phys.
101
,
103905
(
2012
).
17.
Y.
Zhou
,
J.
Liu
, and
X. P.
Hu
, “
Flexoelectric effect in PVDF-based polymers
,”
IEEE Trans. Dielectr. Electr.
24
,
727
(
2017
).
18.
E.
Sahin
and
S.
Dost
, “
A strain-gradients theory of elastic dielectrics with spatial dispersion
,”
Int. J. Eng. Sci.
26
,
1231
(
1998
).
19.
A. K.
Tagantsev
, “
Piezoelectricity and flexoelectricity in crystalline dielectrics
,”
Phys. Rev. B
34
,
5883
(
1986
).
20.
A. K.
Tagantsev
, “
Electric polarization in crystals and its response to thermal and elastic perturbation
,”
Phase Transitions
35
,
119
(
1991
).
21.
A. S.
Yurkov
and
A. K.
Tagantsev
, “
Strong surface effect on direct bulk flexoelectric response in solids
,”
Appl. Phys. Lett.
108
,
022904
(
2016
).
22.
B.
He
,
B.
Javvaji
, and
X. Y.
Zhuang
, “
Size dependent flexoelectric and mechanical properties of barium titanate nanobelt: A molecular dynamics study
,”
Physica B
545
,
527
(
2018
).
23.
L.
Qi
,
S. J.
Zhou
, and
A. Q.
Li
, “
Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect
,”
Compos. Struct.
135
,
167
(
2016
).
24.
G.
Bai
,
K.
Qin
,
Q. Y.
Xie
,
X.
Yan
,
C.
Gao
, and
Z.
Liu
, “
Size dependent flexocaloric effect of paraelectric Ba0.67Sr0.33TiO3 nanostructures
,”
Mater. Lett.
186
,
146
(
2017
).
25.
R.
Maranganti
and
P.
Sharma
, “
Atomistic determination of flexoelectric properties of crystalline dielectrics
,”
Phys. Rev. B
80
,
054109
(
2009
).
26.
J. W.
Hong
and
D.
Vanderbilt
, “
First-principles theory of frozen-ion flexoelectricity
,”
Phys. Rev. B
84
,
180101
(
2011
).
27.
J. W.
Hong
and
D.
Vanderbilt
, “
First-principles theory and calculation of flexoelectricity
,”
Phys. Rev. B
88
,
174107
(
2013
).
28.
F.
Deng
,
Q.
Deng
, and
S. P.
Shen
, “
A three-dimensional mixed finite element for flexoelectricity
,”
J. Appl. Mech.
85
,
031009
(
2018
).
29.
J.
Yvonnet
,
X.
Chen
, and
P.
Sharma
, “
Apparent flexoelectricity due to heterogeneous piezoelectricity
,”
J. Appl. Mech.
87
,
111003
(
2020
).
30.
Q.
Li
,
C. T.
Nelson
,
S.-L.
Hsu
,
A. R.
Damodaran
,
L.-L.
Li
,
A. K.
Yadav
,
M.
McCarter
,
L. W.
Martin
,
R.
Ramesh
, and
S. V.
Kalinin
, “
Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling
,”
Nat. Commun.
8
,
1468
(
2017
).
31.
Y.-J.
Wang
,
J.
Li
,
Y.-L.
Zhu
, and
X.-L.
Ma
, “
Phase-field modeling and electronic structural analysis of flexoelectric effect at 180° domain walls in ferroelectric PbTiO3
,”
J. Appl. Phys.
122
,
224101
(
2017
).
32.
N. D.
Sharma
,
R.
Maranganti
, and
P.
Sharma
, “
On the possibility of piezoelectric nanocomposites without using piezoelectric materials
,”
J. Mech. Phys. Solids
55
,
2328
(
2007
).
33.
P.
Zubko
,
G.
Catalan
, and
A. K.
Tagantsev
, “
Flexoelectric effect in solids
,”
Annu. Rev. Mater. Res.
43
,
387
(
2013
).
34.
B.
Wang
,
Y.
Gu
,
S.
Zhang
, and
L.-Q.
Chen
, “
Flexoelectricity in solids: Progress, challenges, and perspectives
,”
Prog. Mater. Sci.
106
,
100570
(
2019
).
35.
J.
Narvaez
,
F.
Vasquez-Sancho
, and
G.
Catalan
, “
Enhanced flexoelectric-like response in oxide semiconductors
,”
Nature
538
,
219
(
2016
).
36.
A.
Abdollahi
,
F.
Vasquez-Sancho
, and
G.
Catalan
, “
Piezoelectric mimicry of flexoelectricity
,”
Phys. Rev. Lett.
121
,
205502
(
2018
).
37.
L.
Shu
,
R.
Liang
,
Z.
Rao
,
L.
Fei
,
S.
Ke
, and
Y.
Wang
, “
Flexoelectric materials and their related applications: A focused review
,”
J. Adv. Ceram.
8
,
153
(
2019
).
38.
L.
Shu
,
S.
Ke
,
L.
Fei
,
W.
Huang
,
Z.
Wang
,
J.
Gong
,
X.
Jiang
,
L.
Wang
,
F.
Li
,
S.
Lei
,
Z.
Rao
,
Y.
Zhou
,
R.-K.
Zheng
,
X.
Yao
,
Y.
Wang
,
M.
Stengel
, and
G.
Catalan
, “
Photoflexoelectric effect in halide perovskites
,”
Nat. Mater.
19
,
605
(
2020
).
39.
H.
Le Quang
and
Q.-C.
He
, “
The number and types of all possible rotational symmetries for flexoelectric tensors
,”
Proc. R. Soc. A
467
,
2369
(
2011
).
40.
L.
Shu
,
X.
Wei
,
T.
Pang
,
X.
Yao
, and
C.
Wang
, “
Symmetry of flexoelectric coefficients in crystalline medium
,”
J. Appl. Phys.
110
,
104106
(
2011
).
41.
A.
Spencer
, “
A note on the decomposition of tensors into traceless symmetric tensors
,”
Int. J. Eng. Sci.
8
,
475
(
1970
).
42.
S.
Forte
and
M.
Vianello
, “
Symmetry classes for elasticity tensors
,”
J. Elast.
43
,
81
(
1996
).
43.
S.
Forte
and
M.
Vianello
, “
Symmetry classes and harmonic decomposition for photoelasticity tensors
,”
Int. J. Eng. Sci.
14
,
1317
(
1997
).
44.
P.
Chadwick
,
M.
Vianello
, and
S.
Cowin
, “
A new proof that the number of linear anisotropic elastic symmetries is eight
,”
J. Mech. Phys. Solids
49
,
2471
(
2001
).
45.
M.
Francois
,
G.
Geymonat
, and
Y.
Berthaud
, “
Determination of the symmetries of an experimentally determined stiffness tensor: Application to acoustic measurements
,”
Int. J. Solids Struct.
35
,
4091
(
1998
).
46.
P.
Lukashev
and
R. F.
Sabirianov
, “
Flexomagnetic effect in frustrated triangular magnetic structures
,”
Phys. Rev. B
82
,
094417
(
2010
).
You do not currently have access to this content.