Based on three-dimensional equations of piezoelectric semiconductors, we take flexoelectricity into consideration to develop a deformation–polarization–carrier coupling analysis model for the bending of a piezoelectric semiconductor (PS) composite bilayer, which is composed of a piezoelectric semiconductor layer and an elastic layer. Using the derived equations, we investigate the macroscopic responses, such as the distribution of electromechanical field and carrier concentration, of the PS composite bilayer with bending deformation. The induced polarization in the PS composite bilayer exhibits an apparent size-dependent property due to the flexoelectric coupling effect, and thus has a remarkable influence on the piezotronic effect in the PS composite bilayer with nano-thickness. The obtained results are useful for designing novel piezoelectric semiconductor devices.

1.
Y.
Liu
,
Y.
Zhang
,
Q.
Yang
,
S.
Niu
, and
Z. L.
Wang
,
Nano Energy
14
,
257
(
2015
).
2.
Z. L.
Wang
and
W.
Wu
,
Natl. Sci. Rev.
1
,
62
(
2014
).
3.
L. F.
Wang
and
Z. L.
Wang
,
Nano Today
37
,
101108
(
2021
).
4.
Q.
Yang
,
W. H.
Wang
,
S.
Xu
, and
Z. L.
Wang
,
Nano Lett.
11
,
4012
(
2011
).
5.
Q.
Yang
,
X.
Guo
,
W.
Wang
,
Y.
Zhang
,
S.
Xu
,
D. H.
Lien
, and
Z. L.
Wang
,
ACS Nano
4
,
6285
(
2010
).
6.
X.
Li
,
M.
Chen
,
R.
Yu
,
T.
Zhang
,
D.
Song
,
R.
Liang
,
Q. L.
Zhang
,
S.
Cheng
,
L.
Dong
,
A.
Pan
,
Z.
Wang
,
J.
Zhu
, and
C.
Pan
,
Adv. Mater.
27
,
4447
(
2015
).
7.
C.
Wang
,
R.
Bao
,
K.
Zhao
,
T.
Zhang
,
L.
Dong
, and
C.
Pan
,
Nano Energy
14
,
364
(
2015
).
8.
G.
Hu
,
W.
Guo
,
R.
Yu
,
X.
Yang
,
R.
Zhou
,
C.
Pan
, and
Z. L.
Wang
,
Nano Energy
23
,
27
(
2016
).
9.
C.
Zhang
,
X.
Wang
,
W.
Chen
, and
J.
Yang
,
Smart Mater. Struct.
26
,
025030
(
2017
).
10.
Y.
Luo
,
C.
Zhang
,
W.
Chen
, and
J.
Yang
,
J. Appl. Phys.
122
,
204502
(
2017
).
11.
Y.
Luo
,
C.
Zhang
,
W.
Chen
, and
J.
Yang
,
J. Appl. Mech.
86
,
051003
(
2019
).
12.
S.
Fan
,
Y.
Liang
,
J.
Xie
, and
Y.
Hu
,
Nano Energy
40
,
82
(
2017
).
13.
S.
Fan
,
Y.
Hu
, and
J.
Yang
,
Appl. Math. Mech.
40
,
591
(
2019
).
14.
X.
Dai
,
F.
Zhu
,
Z.
Qian
, and
J.
Yang
,
Nano Energy
43
,
22
(
2018
).
15.
G.
Wang
,
J.
Liu
,
X.
Liu
,
W.
Feng
, and
J.
Yang
,
J. Appl. Phys.
124
,
094502
(
2018
).
16.
F.
Jiao
,
P.
Wei
,
Y.
Zhou
, and
X.
Zhou
,
Eur. J. Mech. A Solids
75
,
70
(
2019
).
17.
R.
Tian
,
J.
Liu
,
E.
Pan
,
Y.
Wang
, and
A. K.
Soh
,
J. Appl. Phys.
126
,
125701
(
2019
).
18.
C. L.
Zhang
,
X. Y.
Wang
,
W. Q.
Chen
, and
J. S.
Yang
,
AIP Adv.
6
,
045301
(
2016
).
19.
M.
Zhao
,
Y.
Pan
,
C.
Fan
, and
G.
Xu
,
Int. J. Solids Struct.
94–95
,
50
(
2016
).
20.
M.
Zhao
,
Y.
Pan
,
C.
Fan
, and
G.
Xu
,
Smart Mater. Struct.
26
,
085029
(
2017
).
21.
J.
Sladek
,
V.
Sladek
,
E.
Pan
, and
M.
Wünsche
,
Eng. Fract. Mech.
126
,
27
(
2014
).
22.
P. V.
Yudin
and
A. K.
Tagantsev
,
Nanotechnology
24
,
432001
(
2013
).
23.
V. S.
Mashkevich
and
K. B.
Tolpygo
,
Sov. Phys. JEPT
5
,
435
(
1957
).
24.
S. M.
Kogan
,
Sov. Phys. Solid State
5
,
2069
(
1964
).
25.
S.
Shen
and
S.
Hu
,
J. Mech. Phys. Solids
58
,
665
(
2010
).
26.
C.
Liu
,
S.
Hu
, and
S.
Shen
,
Smart Mater. Struct.
21
,
115024
(
2012
).
27.
X.
Liang
,
S.
Hu
, and
S.
Shen
,
Smart Mater. Struct.
26
,
035050
(
2017
).
28.
C.
Zhang
,
L.
Zhang
,
X.
Shen
, and
W.
Chen
,
J. Appl. Phys.
119
,
134102
(
2016
).
29.
G.
Xu
,
F.
Hao
,
M.
Weng
,
J.
Hong
,
F.
Pan
, and
D.
Fang
,
Nanoscale
12
,
15175
(
2020
).
30.
D.
Lee
,
S. M.
Yang
,
J.-G.
Yoon
, and
T. W.
Noh
,
Nano Lett.
12
,
6436
(
2012
).
31.
B. C.
Jeon
,
D.
Lee
,
M. H.
Lee
,
S. M.
Yang
,
S. C.
Chae
,
T. K.
Song
,
S. D.
Bu
,
J.-S.
Chung
,
J.-G.
Yoon
, and
T. W.
Noh
,
Adv. Mater.
25
,
5643
(
2013
).
32.
L.
Wang
,
S.
Liu
,
X.
Feng
,
C.
Zhang
,
L.
Zhu
,
J.
Zhai
,
Y.
Qin
, and
Z. L.
Wang
,
Nat. Nanotechnol.
15
,
661
(
2020
).
33.
L.
Sun
,
L.
Zhu
,
C.
Zhang
,
W.
Chen
, and
Z.
Wang
,
Nano Energy
83
,
105855
(
2021
).
34.
K. F.
Wang
and
B. L.
Wang
,
Nanotechnology
29
,
255405
(
2018
).
35.
M.
Zhao
,
X.
Liu
,
C.
Fan
,
C.
Lu
, and
B.
Wang
,
J. Appl. Phys.
127
,
085707
(
2020
).
36.
Y.
Qu
,
F.
Jin
, and
J.
Yang
,
Arch. Appl. Mech.
91
,
2027
2038
(
2021
).
37.
Y.
Qu
,
F.
Jin
, and
J.
Yang
,
J. Appl. Phys.
127
,
194502
(
2020
).
38.
B.
Chu
,
W.
Zhu
,
N.
Li
, and
L. E.
Cross
,
J. Appl. Phys.
106
,
104109
(
2009
).
39.
R. A.
Toupin
,
J. Ration. Mech. Anal.
5
,
849
(
1956
).
40.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Wiley
,
New York
,
1973
), Vol. I.
41.
W.
Huang
,
K.
Kim
,
S.
Zhang
,
F. G.
Yuan
, and
X.
Jiang
, in
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
. Volume 11: Nano and Micro Materials, Devices and Systems; Microsystems Integration, Denver, Colorado, 11-17 November 2011 (ASME, 2011), pp. 761–766.
42.
W.
Huang
,
S.-R.
Kwon
,
S.
Zhang
,
F.-G.
Yuan
, and
X.
Jiang
,
J. Intell. Mater. Syst. Struct.
25
,
271
(
2014
).
43.
U. K.
Bhaskar
,
N.
Banerjee
,
A.
Abdollahi
,
E.
Solanas
,
G.
Rijnders
, and
G.
Catalan
,
Nanoscale
8
,
1293
(
2016
).
You do not currently have access to this content.