Reported here is a comparison of the magnetic, magnetocaloric, and dielectric properties of 50% iron substituted GdCrO3 (GdFe0.5Cr0.5O3) bulk pellet and 960 nm thick film of GdFe0.5Cr0.5O3 (GFCO). The 960 nm film was synthesized on a platinized-silicon substrate by chemical solution deposition and spin-coating methods. The X-ray diffraction scans of the bulk sample and the film as well as the morphology of the film as examined by the field-emission scanning electron microscope indicate phase-pure and polycrystalline nature of these samples. X-ray photoelectron spectroscopy was used to determine the valence states of Gd, Fe, and Cr. The temperature dependence of the dielectric constant from 225 to 700 K shows peaks at TC = 525 K for the bulk and ∼450 K for the film due to ferroelectric to paraelectric transitions, since electric polarization vs electric field hysteresis loops are observed at room temperature. The dielectric studies in the bulk GFCO for T > TC indicate a relaxor-like behavior. The measurements of the magnetization (M) of the samples as a function of temperature (5–350 K) and magnetic field (H) up to 7 T (=70 kOe) depict hysteresis behavior at low temperatures due to the canted antiferromagnetic order of Fe3+/Cr3+ below the Néel temperature of ∼275 K. The M vs H isotherms at various temperatures are used to determine and compare the magnetic entropy change (−ΔS) and relative cooling power (RCP) of the two samples, yielding (−ΔS) = 30.7 J/kg K (18.8 J/kg K) and RCP = 566.5 J/kg (375 J/kg) for the bulk (960 nm film) samples of GFCO at 7 K and 7 T, respectively. The plot of RCP vs T shows that magnetic cooling for this system is most effective for T < 30 K. Comparatively smaller magnitudes of (−ΔS) and RCP for the film vis-à-vis the bulk sample of GFCO scale with its reduced magnetization. This suggests that further improvements in the quality of the films are needed to improve their magnetization and hence their magnetocaloric properties, possibly making them useful for on-chip cooling in miniaturized devices.

1.
V.
Franco
,
J. S.
Blázquez
,
B.
Ingale
, and
A.
Conde
, “
The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models
,”
Annu. Rev. Mater. Res.
42
,
305
342
(
2012
).
2.
J.
Dhahri
,
A.
Dhahri
,
M.
Oumezzine
, and
E.
Dhahri
, “
Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of La0.67Ba0.33Mn1−xSnxO3 compounds
,”
J. Magn. Magn. Mater.
320
(
21
),
2613
2617
(
2008
).
3.
L. T.
Kuhn
,
N.
Pryds
,
C. R. H.
Bahl
, and
A.
Smith
, “
Magnetic refrigeration at room temperature—From magnetocaloric materials to a prototype
,”
J. Phys. Conf. Ser.
303
,
012082
(
2011
).
4.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
, “
Magnetocaloric effect and magnetic refrigeration
,”
J. Magn. Magn. Mater.
200
(
1–3
),
44
56
(
1999
).
5.
C. W.
Miller
,
D. D.
Belyea
, and
B. J.
Kirby
, “
Magnetocaloric effect in nanoscale thin films and heterostructures
,”
J. Vac. Sci. Technol. A
32
(
4
),
040802
(
2014
).
6.
N. A.
De Oliveira
and
P. J.
Von Ranke
, “
Theoretical aspects of the magnetocaloric effect
,”
Phys. Rep.
489
(
4–5
),
89
159
(
2010
).
7.
B. F.
Yu
,
Q.
Gao
,
B.
Zhang
,
X. Z.
Meng
, and
Z.
Chen
, “
Review on research of room temperature magnetic refrigeration
,”
Int. J. Refrig.
26
(
6
),
622
636
(
2003
).
8.
K. G.
Sandeman
, “
Magnetocaloric materials: The search for new systems
,”
Scr. Mater.
67
(
6
),
566
571
(
2012
).
9.
M. E.
Wood
and
W. H.
Potter
, “
General analysis of magnetic refrigeration and its optimization using a new concept: Maximization of refrigerant capacity
,”
Cryogenics
25
(
12
),
667
683
(
1985
).
10.
K. A.
Gschneidner
, Jr.
, and
V. K.
Pecharsky
, “
Magnetocaloric materials
,”
Annu. Rev. Mater. Sci.
30
(
1
),
387
429
(
2000
).
11.
I.
Niknia
,
P. V.
Trevizoli
,
T. V.
Christiaanse
,
P.
Govindappa
,
R.
Teyber
, and
A.
Rowe
, “
Material screening metrics and optimal performance of an active magnetic regenerator
,”
J. Appl. Phys.
121
(
6
),
064902
(
2017
).
12.
D.
Jiles
,
Introduction to Magnetism and Magnetic Materials
(
CRC Press
,
2015
).
13.
C.
Zimm
,
A.
Jastrab
,
A.
Sternberg
,
V.
Pecharsky
,
K.
Gschneidner
,
M.
Osborne
, and
I.
Anderson
, “
Description and performance of a near-room temperature magnetic refrigerator
,” in
Advances in Cryogenic Engineering
(
Springer
,
1998
), pp.
1759
1766
.
14.
R.
Bjørk
,
C. R. H.
Bahl
, and
M.
Katter
, “
Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd
,”
J. Magn. Magn. Mater.
322
(
24
),
3882
3888
(
2010
).
15.
K. A.
Gschneidner
, Jr.
,
V. K.
Pecharsky
, and
A. O.
Tsokol
, “
Recent developments in magnetocaloric materials
,”
Rep. Prog. Phys.
68
(
6
),
1479
(
2005
).
16.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
, “
Giant magnetocaloric effect in Gd5(Si2Ge2)
,”
Phys. Rev. Lett.
78
(
23
),
4494
(
1997
).
17.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
, “
Giant magnetocaloric effect driven by structural transitions
,”
Nat. Mater.
11
(
7
),
620
626
(
2012
).
18.
M.-H.
Phan
and
S.-C.
Yu
, “
Review of the magnetocaloric effect in manganite materials
,”
J. Magn. Magn. Mater.
308
(
2
),
325
340
(
2007
).
19.
M.
Das
,
S.
Roy
, and
P.
Mandal
, “
Giant reversible magnetocaloric effect in a multiferroic GdFeO3 single crystal
,”
Phys. Rev. B
96
(
17
),
174405
(
2017
).
20.
M.
Shao
,
S.
Cao
,
Y.
Wang
,
S.
Yuan
,
B.
Kang
, and
J.
Zhang
, “
Large magnetocaloric effect in HoFeO3 single crystal
,”
Solid State Commun.
152
(
11
),
947
950
(
2012
).
21.
S.
Yin
,
M. S.
Seehra
,
C. J.
Guild
,
S. L.
Suib
,
N.
Poudel
,
B.
Lorenz
, and
M.
Jain
, “
Magnetic and magnetocaloric properties of HoCrO3 tuned by selective rare-earth doping
,”
Phys. Rev. B
95
(
18
),
184421
(
2017
).
22.
S.
Mahana
,
U.
Manju
, and
D.
Topwal
, “
GdCrO3: A potential candidate for low temperature magnetic refrigeration
,”
J. Phys. D: Appl. Phys.
51
(
30
),
305002
(
2018
).
23.
E.
Palacios
,
C.
Tomasi
,
R.
Sáez-Puche
,
A. J.
Dos santos-García
,
F.
Fernández-Martínez
, and
R.
Burriel
, “
Effect of Gd polarization on the large magnetocaloric effect of GdCrO4 in a broad temperature range
,”
Phys. Rev. B
93
(
6
),
064420
(
2016
).
24.
Q. Y.
Dong
,
K. Y.
Hou
,
X. Q.
Zhang
,
L.
Su
,
L. C.
Wang
,
Y. J.
Ke
,
H. T.
Yan
, and
Z. H.
Cheng
, “
Giant reversible magnetocaloric effect in antiferromagnetic rare-earth cobaltite GdCoO3
,”
J. Appl. Phys.
127
(
3
),
033904
(
2020
).
25.
A. A.
Wagh
,
K.
Suresh
,
P. A.
Kumar
, and
S.
Elizabeth
, “
Low temperature giant magnetocaloric effect in multiferroic GdMnO3 single crystals
,”
J. Phys. D: Appl. Phys.
48
(
13
),
135001
(
2015
).
26.
J.-L.
Jin
,
X.-Q.
Zhang
,
G.-K.
Li
,
Z.-H.
Cheng
,
L.
Zheng
, and
Y.
Lu
, “
Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals
,”
Phys. Rev. B
83
(
18
),
184431
(
2011
).
27.
A.
Midya
,
P.
Mandal
,
S.
Das
,
S.
Banerjee
,
L. S.
Chandra
,
V.
Ganesan
, and
S. R.
Barman
, “
Magnetocaloric effect in HoMnO3 crystal
,”
Appl. Phys. Lett.
96
(
14
),
142514
(
2010
).
28.
M.
Balli
,
S.
Mansouri
,
S.
Jandl
,
P.
Fournier
, and
D. Z.
Dimitrov
, “
Large rotating magnetocaloric effect in the orthorhombic DyMnO3 single crystal
,”
Solid State Commun.
239
,
9
13
(
2016
).
29.
M.
Balli
,
S.
Jandl
,
P.
Fournier
,
J.
Vermette
, and
D. Z.
Dimitrov
, “
Unusual rotating magnetocaloric effect in the hexagonal ErMnO3 single crystal
,”
Phys. Rev. B
98
(
18
),
184414
(
2018
).
30.
A.
Rostamnejadi
,
M.
Venkatesan
,
P.
Kameli
,
H.
Salamati
, and
J. M. D.
Coey
, “
Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature
,”
J. Magn. Magn. Mater.
323
(
16
),
2214
2218
(
2011
).
31.
S.
Yin
and
M.
Jain
, “
Enhancement in magnetocaloric properties of holmium chromite by gadolinium substitution
,”
J. Appl. Phys.
120
(
4
),
043906
(
2016
).
32.
J.
Shi
,
M. E.
Johnson
,
M.
Zhang
,
P.-X.
Gao
, and
M.
Jain
, “
Antiferromagnetic and dielectric behavior in polycrystalline GdFe0.5Cr0.5O3 thin film
,”
APL Mater.
8
(
3
),
031106
(
2020
).
33.
Z. X.
Cheng
,
X. L.
Wang
,
S. X.
Dou
,
H.
Kimura
, and
K.
Ozawa
, “
A novel multiferroic system: Rare earth chromates
,”
J. Appl. Phys.
107
(
9
),
09D905
(
2010
).
34.
M. M.
Vopson
, “
The multicaloric effect in multiferroic materials
,”
Solid State Commun.
152
(
23
),
2067
2070
(
2012
).
35.
H.
Meng
,
B.
Li
,
W.
Ren
, and
Z.
Zhang
, “
Coupled caloric effects in multiferroics
,”
Phys. Lett. A
377
(
7
),
567
571
(
2013
).
36.
L.
Boudad
,
M.
Taibi
,
W.
Belayachi
,
Z.
Edfouf
,
F. C.
El Moursli
,
M.
Regragui
, and
M.
Abd-Lefdil
, “
Investigation of structural and magnetic properties of GdFe0.5Cr0.5O3 perovskite prepared by solid-state route
,”
J. Supercond. Novel Magn.
33
,
1365
1368
(
2020
).
37.
V. G.
Nair
,
A.
Das
,
V.
Subramanian
, and
P. N.
Santhosh
, “
Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3
,”
J. Appl. Phys.
113
(
21
),
213907
(
2013
).
38.
L. H.
Yin
,
J.
Yang
,
R. R.
Zhang
,
J. M.
Dai
,
W. H.
Song
, and
Y. P.
Sun
, “
Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe0.5Cr0.5O3
,”
Appl. Phys. Lett.
104
(
3
),
032904
(
2014
).
39.
L. H.
Yin
,
J.
Yang
,
P.
Tong
,
X.
Luo
,
W. H.
Song
,
J. M.
Dai
,
X. B.
Zhu
, and
Y. P.
Sun
, “
Magnetocaloric effect and influence of Fe/Cr disorder on the magnetization reversal and dielectric relaxation in RFe0.5Cr0.5O3 systems
,”
Appl. Phys. Lett.
110
(
19
),
192904
(
2017
).
40.
K.
Yadav
,
G.
Kaur
,
M. K.
Sharma
, and
K.
Mukherjee
, “
Magnetocaloric effect and spin-phonon correlations in RFe0.5Cr0.5O3 (R = Er and Yb) compounds
,”
Phys. Lett. A
384
(
26
),
126638
(
2020
).
41.
H. J.
Shin
,
N.
Lee
, and
Y. J.
Choi
, “
Nonlinear magnetodielectric effect of disordered perovskite HoCr0.5Fe0.5O3: Role of magnetic rare-earth ions
,”
J. Alloys Compd.
785
,
1166
1172
(
2019
).
42.
S.
Yin
,
T.
Sauyet
,
C.
Guild
,
S. L.
Suib
, and
M.
Jain
, “
Magnetic properties of pure and Fe doped HoCrO3 thin films fabricated via a solution route
,”
J. Magn. Magn. Mater.
428
,
313
319
(
2017
).
43.
J.
Moore
,
D.
Klemm
,
D.
Lindackers
,
S.
Grasemann
,
R.
Träger
,
J.
Eckert
,
L.
Löber
,
S.
Scudino
,
M.
Katter
, and
A.
Barcza
, “
Selective laser melting of La(Fe,Co,Si)13 geometries for magnetic refrigeration
,”
J. Appl. Phys.
114
(
4
),
043907
(
2013
).
44.
B.
Pulko
,
J.
Tušek
,
J. D.
Moore
,
B.
Weise
,
K.
Skokov
,
O.
Mityashkin
,
A.
Kitanovski
,
C.
Favero
,
P.
Fajfar
, and
O.
Gutfleisch
, “
Epoxy-bonded La–Fe–Co–Si magnetocaloric plates
,”
J. Magn. Magn. Mater.
375
,
65
73
(
2015
).
45.
X.
Moya
,
L.
Hueso
,
F.
Maccherozzi
,
A.
Tovstolytkin
,
D.
Podyalovskii
,
C.
Ducati
,
L.
Phillips
,
M.
Ghidini
,
O.
Hovorka
, and
A.
Berger
, “
Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain
,”
Nat. Mater.
12
(
1
),
52
58
(
2013
).
46.
A.
Biswas
,
S.
Chandra
,
M.-H.
Phan
, and
H.
Srikanth
, “
Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power
,”
J. Alloys Compd.
545
,
157
161
(
2012
).
47.
A.
Biswas
,
T.
Samanta
,
S.
Banerjee
, and
I.
Das
, “
Influence of charge ordering on magnetocaloric properties of nanocrystalline Pr0.65(Ca0.7Sr0.3)0.35MnO3
,”
Appl. Phys. Lett.
92
(
21
),
212502
(
2008
).
48.
S.
Yin
,
T.
Sauyet
,
M. S.
Seehra
, and
M.
Jain
, “
Particle size dependence of the magnetic and magneto-caloric properties of HoCrO3
,”
J. Appl. Phys.
121
(
6
),
063902
(
2017
).
49.
J.
Shi
,
T.
Sauyet
,
Y.
Dang
,
S. L.
Suib
,
M. S.
Seehra
, and
M.
Jain
, “
Structure-property correlations and scaling in the magnetic and magnetocaloric properties of GdCrO3 particles
,”
J. Phys.: Condens. Matter
33
(
20
),
205801
(
2021
).
50.
N. S.
Bingham
,
P.
Lampen
,
M. H.
Phan
,
T. D.
Hoang
,
H. D.
Chinh
,
C. L.
Zhang
,
S.-W.
Cheong
, and
H.
Srikanth
, “
Impact of nanostructuring on the magnetic and magnetocaloric properties of microscale phase-separated La5/8−yPryCa3/8MnO3 manganites
,”
Phys. Rev. B
86
(
6
),
064420
(
2012
).
51.
Y.
Wang
,
D.
Guo
,
B.
Wu
,
S.
Geng
, and
Y.
Zhang
, “
Magnetocaloric effect and refrigeration performance in RE60Co20Ni20 (RE = Ho and Er) amorphous ribbons
,”
J. Magn. Magn. Mater.
498
,
166179
(
2020
).
52.
C. V.
Thompson
and
R.
Carel
, “
Stress and grain growth in thin films
,”
J. Mech. Phys. Solids
44
(
5
),
657
673
(
1996
).
53.
T.
Schuler
,
T.
Krajewski
,
I.
Grobelsek
, and
M. A.
Aegerter
, “
A microstructural zone model for the morphology of sol-gel coatings
,”
J. Sol-Gel Sci. Technol.
31
(
1–3
),
235
239
(
2004
).
54.
A.
McDannald
,
M.
Staruch
,
G.
Sreenivasulu
,
C.
Cantoni
,
G.
Srinivasan
, and
M.
Jain
, “
Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3:xCoFe2O4 nanocomposite films
,”
Appl. Phys. Lett.
102
(
12
),
122905
(
2013
).
55.
M.
Staruch
,
C.
Cantoni
, and
M.
Jain
, “
Systematic study of magnetotransport properties and enhanced low-field magnetoresistance in thin films of La0.67Sr0.33MnO3+Mg(O)
,”
Appl. Phys. Lett.
102
(
6
),
062416
(
2013
).
56.
A.
Jaiswal
,
R.
Das
,
S.
Adyanthaya
, and
P.
Poddar
, “
Synthesis and optical studies of GdCrO3 nanoparticles
,”
J. Nanopart. Res.
13
(
3
),
1019
1027
(
2011
).
57.
L.
Li
,
X.
Wang
,
Y.
Lan
,
W.
Gu
, and
S.
Zhang
, “
Synthesis, photocatalytic and electrocatalytic activities of wormlike GdFeO3 nanoparticles by a glycol-assisted sol–gel process
,”
Ind. Eng. Chem. Res.
52
(
26
),
9130
9136
(
2013
).
58.
G. C. A. M.
Janssen
, “
Stress and strain in polycrystalline thin films
,”
Thin Solid Films
515
(
17
),
6654
6664
(
2007
).
59.
E.
Chason
and
P. R.
Guduru
, “
Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models
,”
J. Appl. Phys.
119
(
19
),
191101
(
2016
).
60.
U.
Welzel
,
J.
Ligot
,
P.
Lamparter
,
A. C.
Vermeulen
, and
E. J.
Mittemeijer
, “
Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction
,”
J. Appl. Crystallogr.
38
(
1
),
1
29
(
2005
).
61.
J.
Shanker
,
B. V.
Prasad
,
M. B.
Suresh
,
R. V.
Kumar
, and
D. S.
Babu
, “
Electrical properties of NdCr1-xFexO3 perovskite ceramic nanoparticles—An impedance spectroscopy studies
,”
Mater. Res. Bull.
94
,
385
398
(
2017
).
62.
J.
Ahmad
,
M. K.
Rahmani
,
J.
Mansoor
,
M. T.
Jamil
,
T.
Sultan
, and
S. H.
Bukhari
, “
Frequency shifts of infrared active phonon modes in orthorhombic Dy1−xYxMn2O5
,”
Phys. B
514
,
30
36
(
2017
).
63.
L. H.
Yin
,
J.
Yang
,
X. C.
Kan
,
W. H.
Song
,
J. M.
Dai
, and
Y. P.
Sun
, “
Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal
,”
J. Appl. Phys.
117
(
13
),
133901
(
2015
).
64.
L.
Boudad
,
M.
Taibi
,
W.
Belayachi
,
M.
Sajieddine
, and
M.
Abd-Lefdil
, “
High temperature dielectric investigation, optical and conduction properties of GdFe0.5Cr0.5O3 perovskite
,”
J. Appl. Phys.
127
(
17
),
174103
(
2020
).
65.
S.
Geller
, “
Crystal structure of gadolinium orthoferrite, GdFeO3
,”
J. Chem. Phys.
24
(
6
),
1236
1239
(
1956
).
66.
Z.
Hou
,
F.
Chen
,
J.
Wang
,
C. P.
François-Xavier
, and
T.
Wintgens
, “
Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity
,”
Appl. Catal. B
232
,
124
134
(
2018
).
67.
Y.
Zhang
,
A.
Zheng
,
X.
Yang
,
H.
He
,
Y.
Fan
, and
C.
Yao
, “
Cubic GdFeO3 particle by a simple hydrothermal synthesis route and its photoluminescence and magnetic properties
,”
CrystEngComm
14
(
24
),
8432
8439
(
2012
).
68.
R.
Zhang
,
Y.
Fang
,
T.
Chen
,
F.
Qu
,
Z.
Liu
,
G.
Du
,
A. M.
Asiri
,
T.
Gao
, and
X.
Sun
, “
Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods array by S doping
,”
ACS Sust. Chem. Eng.
5
(
9
),
7502
7506
(
2017
).
69.
C.
Bohr
,
P.
Yu
,
M.
Scigaj
,
C.
Hegemann
,
T.
Fischer
,
M.
Coll
, and
S.
Mathur
, “
Atomic scale growth of GdFeO3 perovskite thin films
,”
Thin Solid Films
698
,
137848
(
2020
).
70.
P.
Gupta
,
R.
Bhargava
,
R.
Das
, and
P.
Poddar
, “
Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets
,”
RSC Adv.
3
(
48
),
26427
26432
(
2013
).
71.
S.
Mathur
and
A.
Krishnamurthy
, “
Dielectric studies of multiferroic orthochromites Ho0.9 (RE)0.1CrO3 (where RE = Gd and Yb)
,”
Ceram. Int.
42
(
9
),
11459
11463
(
2016
).
72.
J.
Shanker
,
M. B.
Suresh
,
G. N.
Rao
, and
D. S.
Babu
, “
Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles
,”
J. Mater. Sci.
54
(
7
),
5595
5604
(
2019
).
73.
T.
Patri
,
P.
Justin
,
P. D.
Babu
, and
A.
Ghosh
, “
Analysis of dielectric and magnetic phase transitions in Yb(Fe0.5Cr0.5)O3 bulk perovskite
,”
Appl. Phys. A
125
(
4
),
1
12
(
2019
).
74.
B. J.
Prakash
,
B. H.
Rudramadevi
, and
S.
Buddhudu
, “
Analysis of ferroelectric, dielectric and magnetic properties of GdFeO3 nanoparticles
,”
Ferroelectr. Lett. Sect.
41
(
4–6
),
110
122
(
2014
).
75.
X. L.
Zhu
and
X. M.
Chen
, “
Ferroelectric properties and polarization dynamics in Ba4Sm2Ti4Ta6O30 tungsten bronze ceramics
,”
Appl. Phys. Lett.
108
(
15
),
152903
(
2016
).
76.
D.
Viehland
,
S. J.
Jang
,
L. E.
Cross
, and
M.
Wuttig
, “
Freezing of the polarization fluctuations in lead magnesium niobate relaxors
,”
J. Appl. Phys.
68
(
6
),
2916
2921
(
1990
).
77.
Y.
Qiao
,
Y.
Zhou
,
S.
Wang
,
L.
Yuan
,
Y.
Du
,
D.
Lu
,
G.
Che
, and
H.
Che
, “
Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1−xCrxO3 (0.1 ≤ x ≤ 0.9) perovskites
,”
Dalton Trans.
46
(
18
),
5930
5937
(
2017
).
78.
J. F.
Scott
, “
Ferroelectrics go bananas
,”
J. Phys.: Condens. Matter
20
(
2
),
021001
(
2008
).
79.
P.
Banerjee
and
A.
Franco
, Jr.
, “
Substitution-induced near phase transition with Maxwell–Wagner polarization in SrBi2(Nb1−xAx)2O9 ceramics [A = W, Mo and x = 0, 0.025]
,”
Phys. Status Solidi A
214
(
10
),
1700067
(
2017
).
80.
T.
Wang
,
J.
Hu
,
H.
Yang
,
L.
Jin
,
X.
Wei
,
C.
Li
,
F.
Yan
, and
Y.
Lin
, “
Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics
,”
J. Appl. Phys.
121
(
8
),
084103
(
2017
).
81.
Y. J.
Li
,
X. M.
Chen
,
R. Z.
Hou
, and
Y. H.
Tang
, “
Maxwell–Wagner characterization of dielectric relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composite
,”
Solid State Commun.
137
(
3
),
120
125
(
2006
).
82.
S.
Laux
and
W.
Richter
, “
Packing-density calculation of thin fluoride films from infrared transmission spectra
,”
Appl. Opt.
35
(
1
),
97
101
(
1996
).
83.
J. D.
Rall
and
M.
Seehra
, “
The nature of the magnetism in quasi-2D layered α-Ni(OH)2
,”
J. Phys.: Condens. Matter
24
(
7
),
076002
(
2012
).
84.
A.
McDannald
and
M.
Jain
, “
Magnetocaloric properties of rare-earth substituted DyCrO3
,”
J. Appl. Phys.
118
(
4
),
043904
(
2015
).
85.
B. B.
Dash
and
S.
Ravi
, “
Structural, magnetic and electrical properties of Fe substituted GdCrO3
,”
Solid State Sciences
83
,
192
200
(
2018
).
86.
K.
Orlinski
,
D.
Ryszard
,
M.
Kopcewicz
, and
D. A.
Pawlak
, “
The influence of chromium substitution on crystal structure and shift of Néel transition in GdFe1−xCrxO3 mixed oxides
,”
J. Therm. Anal. Calorim.
127
(
1
),
181
187
(
2017
).
87.
N.
Kumar
,
H.
Kishan
,
A.
Rao
, and
V. P. S.
Awana
, “
Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1−xCrxO3 (0 ≤ x ≤ 1) manganites
,”
J. Appl. Phys.
107
(
8
),
083905
(
2010
).
88.
K.
Orlinski
,
R.
Diduszko
,
M.
Kopcewicz
, and
D. A.
Pawlak
, “
The influence of chromium substitution on crystal structure and shift of Néel transition in GdFe1−xCrxO3 mixed oxides
,”
J. Therm. Anal. Calorim.
127
(
1
),
181
187
(
2017
).
89.
L. H.
Yin
,
J.
Yang
,
P.
Tong
,
X.
Luo
,
W. H.
Song
,
J. M.
Dai
,
X. B.
Zhu
, and
Y. P.
Sun
, “
Magnetocaloric effect and influence of Fe/Cr disorder on the magnetization reversal and dielectric relaxation in RFe0.5Cr0.5O3 systems
,”
Appl. Phys. Lett.
110
(
19
),
192904
(
2017
).
90.
A.
McDannald
,
L.
Kuna
,
M. S.
Seehra
, and
M.
Jain
, “
Magnetic exchange interactions of rare-earth-substituted DyCrO3 bulk powders
,”
Phys. Rev. B
91
(
22
),
224415
(
2015
).
91.
Y.
Tokunaga
,
N.
Furukawa
,
H.
Sakai
,
Y.
Taguchi
,
T.-H.
Arima
, and
Y.
Tokura
, “
Composite domain walls in a multiferroic perovskite ferrite
,”
Nat. Mater.
8
(
7
),
558
562
(
2009
).
92.
M. K.
Sharma
,
T.
Basu
,
K.
Mukherjee
, and
E. V.
Sampathkumaran
, “
Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3
,”
J. Phys.: Condens. Matter
28
(
42
),
426003
(
2016
).
93.
A.
McDannald
,
L.
Kuna
, and
M.
Jain
, “
Magnetic and magnetocaloric properties of bulk dysprosium chromite
,”
J. Appl. Phys.
114
(
11
),
113904
(
2013
).
94.
S.
Yin
,
W.
Zhong
,
C. J.
Guild
,
J.
Shi
,
S. L.
Suib
,
L. F.
Cótica
, and
M.
Jain
, “
Effect of Gd substitution on the structural, magnetic, and magnetocaloric properties of HoCrO3
,”
J. Appl. Phys.
123
(
5
),
053904
(
2018
).
95.
K.-H.
Wu
,
H.-J.
Chen
,
Y. T.
Chen
,
C. C.
Hsieh
,
C.-W.
Luo
,
T. M.
Uen
,
J.-Y.
Juang
,
J.-Y.
Lin
,
T.
Kobayashi
, and
M.
Gospodinov
, “
Marked enhancement of Néel temperature in strained YMnO3 thin films probed by femtosecond spectroscopy
,”
Europhys. Lett.
94
(
2
),
27006
(
2011
).
96.
A. R. E.
Prinsloo
,
H. A.
Derrett
,
O.
Hellwig
,
E. E.
Fullerton
,
H. L.
Alberts
, and
N.
Van den Berg
, “
Influence of growth morphology on the Néel temperature of CrRu thin films and heterostructures
,”
J. Magn. Magn. Mater.
322
(
9–12
),
1126
1129
(
2010
).
97.
V.
Provenzano
,
A. J.
Shapiro
, and
R. D.
Shull
, “
Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron
,”
Nature
429
(
6994
),
853
857
(
2004
).
98.
S.
Sabyasachi
,
M.
Patra
,
S.
Majumdar
,
S.
Giri
,
S.
Das
,
V.
Amaral
,
O.
Iglesias
,
W.
Borghols
, and
T.
Chatterji
, “
Glassy magnetic phase driven by short-range charge and magnetic ordering in nanocrystalline La1/3Sr2/3FeO3−δ: Magnetization, Mössbauer, and polarized neutron studies,
Phys. Rev. B
86
(
10
),
104416
(
2012
).
99.
J.
Shi
,
S.
Yin
,
M. S.
Seehra
, and
M.
Jain
, “
Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution
,”
J. Appl. Phys.
123
(
19
),
193901
(
2018
).
100.
L. D.
Griffith
,
Y.
Mudryk
,
J.
Slaughter
, and
V. K.
Pecharsky
, “
Material-based figure of merit for caloric materials
,”
J. Appl. Phys.
123
(
3
),
034902
(
2018
).
101.
R. L.
Hadimani
,
J. H. B.
Silva
,
A. M.
Pereira
,
D. L.
Schlagel
,
T. A.
Lograsso
,
Y.
Ren
,
X.
Zhang
,
D. C.
Jiles
, and
J. P.
Araújo
, “
Gd5(Si,Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition
,”
Appl. Phys. Lett.
106
(
3
),
032402
(
2015
).
102.
V. V.
Khovaylo
,
V. V.
Rodionova
,
S. N.
Shevyrtalov
, and
V.
Novosad
, “
Magnetocaloric effect in ‘reduced’ dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds
,”
Phys. Status Solidi
251
(
10
),
2104
2113 (
2014
)
.
103.
C. W.
Miller
,
D. V.
Williams
,
N. S.
Bingham
, and
H.
Srikanth
, “
Magnetocaloric effect in Gd/W thin film heterostructures
,”
J. Appl. Phys.
107
(
9
),
09A903
(
2010
).
You do not currently have access to this content.