Developing materials with large optical nonlinearity as well as ultrafast optical response is crucial for high-speed integrated photonic devices. Besides large optical nonlinearity at telecommunication wavelengths, some degenerated semiconductors as transparent conductive oxides are found to have subpicosecond optical responses, yet the theoretical elucidation of such unexpected fast temporal dynamics is still lacking. In this study, after resonant intraband excitation, the recovery of transient nonlinear response was revealed to be 20 times faster in indium tin oxide than in gold with ultrafast time-resolved transmission spectroscopy. By simulating the optical response processes using the two-temperature model, we found that the electron–phonon scattering rates of indium tin oxide and aluminum doped zinc oxide are about 2 orders of magnitude as large as that of gold, which is suggested to be the main origin of the diverse optical response speed. This study quantitatively attributes the measured transient optical response to ultrafast quasi-particle interactions and gives new insights into the theoretical description of the ultrafast dynamics in both metals and degenerated semiconductors.

1.
M.
Kauranen
and
A. V.
Zayats
, “
Nonlinear plasmonics
,”
Nat. Photonics
6
,
737
748
(
2012
).
2.
D.
Cotter
,
R.
Manning
,
K.
Blow
,
A.
Ellis
,
A.
Kelly
,
D.
Nesset
,
I.
Phillips
,
A.
Poustie
, and
D.
Rogers
, “
Nonlinear optics for high-speed digital information processing
,”
Science
286
,
1523
1528
(
1999
).
3.
J.-J.
Lin
and
Z.-Q.
Li
, “
Electronic conduction properties of indium tin oxide: Single-particle and many-body transport
,”
J. Phys.: Condens. Matter
26
,
343201
343201
(
2014
).
4.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Alternative plasmonic materials: Beyond gold and silver
,”
Adv. Mater.
25
,
3264
3294
(
2013
).
5.
O.
Reshef
,
I.
De Leon
,
M. Z.
Alam
, and
R. W.
Boyd
, “
Nonlinear optical effects in epsilon-near-zero media
,”
Nat. Rev. Mater.
4
,
535
551
(
2019
).
6.
N.
Kinsey
,
C.
DeVault
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Near-zero-index materials for photonics
,”
Nat. Rev. Mater.
4
,
742
760
(
2019
).
7.
W.
Yu
,
C.
Antonio
, and
D. N.
Luca
, “
Wide tuning of the optical and structural properties of alternative plasmonic materials
,”
Opt. Mater. Express
5
,
2415
2430
(
2015
).
8.
M. Z.
Alam
,
I.
De Leon
, and
R. W.
Boyd
, “
Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region
,”
Science
352
,
795
797
(
2016
).
9.
P.
Guo
,
R. D.
Schaller
,
J. B.
Ketterson
, and
R. P. H.
Chang
, “
Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude
,”
Nat. Photonics
10
,
267
273
(
2016
).
10.
L.
Caspani
,
R. P. M.
Kaipurath
,
M.
Clerici
,
M.
Ferrera
,
T.
Roger
,
J.
Kim
,
N.
Kinsey
,
M.
Pietrzyk
,
A.
Di Falco
,
V. M.
Shalaev
,
A.
Boltasseva
, and
D.
Faccio
, “
Enhanced nonlinear refractive index in ϵ-near-zero materials
,”
Phys. Rev. Lett.
116
,
233901
(
2016
).
11.
H.
Wang
,
K.
Du
,
C.
Jiang
,
Z.
Yang
,
L.
Ren
,
W.
Zhang
,
S. J.
Chua
, and
T.
Mei
, “
Extended Drude model for intraband-transition-induced optical nonlinearity
,”
Phys. Rev. Appl.
11
,
064062
(
2019
).
12.
M.
Clerici
,
N.
Kinsey
,
C.
DeVault
,
J.
Kim
,
E. G.
Carnemolla
,
L.
Caspani
,
A.
Shaltout
,
D.
Faccio
,
V.
Shalaev
,
A.
Boltasseva
et al., “
Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation
,”
Nat. Commun.
8
,
1
7
(
2017
).
13.
O.
Reshef
,
E.
Giese
,
M. Z.
Alam
,
I. D.
Leon
,
J.
Upham
, and
R. W.
Boyd
, “
Beyond the perturbative description of the nonlinear optical response of low-index materials
,”
Opt. Lett.
42
,
3225
3228
(
2017
).
14.
B. J.
Eggleton
,
B.
Luther-Davies
, and
K.
Richardson
, “
Chalcogenide photonics
,”
Nat. Photonics
5
,
141
148
(
2011
).
15.
A.
Wokaun
,
J. G.
Bergman
,
J. P.
Heritage
,
A. M.
Glass
,
P. F.
Liao
, and
D. H.
Olson
, “
Surface second-harmonic generation from metal island films and microlithographic structures
,”
Phys. Rev. B
24
,
849
856
(
1981
).
16.
P.
Genevet
,
J.-P.
Tetienne
,
E.
Gatzogiannis
,
R.
Blanchard
,
M. A.
Kats
,
M. O.
Scully
, and
F.
Capasso
, “
Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings
,”
Nano Lett.
10
,
4880
4883
(
2010
).
17.
L.
Wang
,
A.
Kiya
,
Y.
Okuno
,
Y.
Niidome
, and
N.
Tamai
, “
Ultrafast spectroscopy and coherent acoustic phonons of Au–Ag core–shell nanorods
,”
J. Chem. Phys.
134
,
054501
(
2011
).
18.
C.
Robert
,
Z.
Mariusz
,
K.
Kalle
,
L.
Janne
,
K.
Markku
, and
K.
Martti
, “
Dipole limit in second-harmonic generation from arrays of gold nanoparticles
,”
Opt. Express
19
,
26866
26871
(
2011
).
19.
C. K.
Sun
,
F.
Vallée
,
L. H.
Acioli
,
E. P.
Ippen
, and
J. G.
Fujimoto
, “
Femtosecond-tunable measurement of electron thermalization in gold
,”
Phys. Rev. B
50
,
15337
15348
(
1994
).
20.
R.
Gunnella
,
G.
Zgrablic
,
E.
Giangrisostomi
,
F.
D’Amico
,
E.
Principi
,
C.
Masciovecchio
,
A.
Di Cicco
, and
F.
Parmigiani
, “
Ultrafast reflectivity dynamics of highly excited Si surfaces below the melting transition
,”
Phys. Rev. B
94
,
155427
(
2016
).
21.
S.
Espinoza
,
S.
Richter
,
M.
Rebarz
,
O.
Herrfurth
,
R.
Schmidt-Grund
,
J.
Andreasson
, and
S.
Zollner
, “
Transient dielectric functions of Ge, Si, and InP from femtosecond pump-probe ellipsometry
,”
Appl. Phys. Lett.
115
,
052105
(
2019
).
22.
H.
Jani
and
L.
Duan
, “
Time-frequency spectroscopy of GaAs transient dispersion using few-cycle pump-probe reflectometry
,”
Phys. Rev. Appl.
13
,
054010
(
2020
).
23.
M. Z.
Alam
,
S. A.
Schulz
,
J.
Upham
,
I.
De Leon
, and
R. W.
Boyd
, “
Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material
,”
Nat. Photonics
12
,
79
83
(
2018
).
24.
G. A.
Wurtz
,
R.
Pollard
,
W.
Hendren
,
G. P.
Wiederrecht
,
D. J.
Gosztola
,
V. A.
Podolskiy
, and
A. V.
Zayats
, “
Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality
,”
Nat. Nanotechnol.
6
,
107
111
(
2011
).
25.
H. I.
Elim
,
W.
Ji
, and
F.
Zhu
, “
Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films
,”
Appl. Phys. B
82
,
439
442
(
2006
).
26.
K. D.
Sattler
,
Handbook of Nanophysics: Principles and Methods
(
CRC Press
,
2010
).
27.
H.
Morkoç
and
U.
Özgür
,
Zinc Oxide: Fundamentals, Materials and Device Technology
(
John Wiley & Sons
,
2008
).
28.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
), Vol. 8.
29.
R.
Pässler
, “
Characteristic non-Debye heat capacity formula applied to GaN and ZnO
,”
J. Appl. Phys.
110
,
043530
(
2011
).
30.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
31.
F.
Maldonado
and
A.
Stashans
, “
Al-doped ZnO: Electronic, electrical and structural properties
,”
J. Phys. Chem. Sol.
71
,
784
787
(
2010
).
32.
A.
Catellani
,
A.
Ruini
, and
A.
Calzolari
, “
Optoelectronic properties and color chemistry of native point defects in Al:ZnO transparent conductive oxide
,”
J. Mater. Chem. C
3
,
8419
8424
(
2015
).
33.
B.
Rethfeld
,
A.
Kaiser
,
M.
Vicanek
, and
G.
Simon
, “
Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation
,”
Phys. Rev. B
65
,
214303
(
2002
).
34.
N.
Preissler
,
O.
Bierwagen
,
A. T.
Ramu
, and
J. S.
Speck
, “
Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films
,”
Phys. Rev. B
88
,
085305
(
2013
).
35.
C.
Voisin
,
N.
Del Fatti
,
D.
Christofilos
, and
F.
Vallée
, “
Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles
,”
J. Phys. Chem. B
105
,
2264
2280
(
2001
).
36.
E.
Carpene
, “
Ultrafast laser irradiation of metals: Beyond the two-temperature model
,”
Phys. Rev. B
74
,
24301
24301
(
2006
).
37.
K.
Seeger
,
Semiconductor Physics
(
Springer Science & Business Media
,
2013
).
38.
L.
Han
,
N.
Van Nong
,
W.
Zhang
,
L. T.
Hung
,
T.
Holgate
,
K.
Tashiro
,
M.
Ohtaki
,
N.
Pryds
,
S.
Linderoth
et al, “
Effects of morphology on the thermoelectric properties of Al-doped ZnO
,”
RSC Adv.
4
,
12353
12361
(
2014
).
39.
M.
Marezio
, “
Refinement of the crystal structure of In2O3 at two wavelengths
,”
Acta Crystallogr.
20
,
723
728
(
1966
).
40.
H.
Attar
,
S.
Ehtemam-Haghighi
,
N.
Soro
,
D.
Kent
, and
M. S.
Dargusch
, “
Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development
,”
J. Alloys Compd.
827
,
154263
(
2020
).

Supplementary Material

You do not currently have access to this content.