Rare earth nickelates (RNOs) have been extensively studied in recent decades because of the metal–insulator phase transition, which can be driven by chemical doping. In the present study, we apply the first-principles calculation to investigate the electronic structures, optical properties, and migration behaviors of Li-doped RNO. Results show that when the doping ratio reaches 100%, RNO changes from the metallic state into an insulating state, which is confirmed by the experimental report. Regarding the optical properties, the absorption coefficient and reflectivity decrease in Li-doped RNO over the entire range of visible and infrared light compared with pristine systems. The migration of Li along the [001] direction of RNO is studied and shows that as the radius of rare earth atoms decreases, the migration barrier generally shows a gradually decreasing trend. These findings may shed light on the application of RNO in electrochromic devices.

1.
S.
Catalano
,
M.
Gibert
,
J.
Fowlie
,
J.
Íñiguez
,
J. M.
Triscone
, and
J.
Kreisel
, “
Rare-earth nickelates RNiO3: Thin films and heterostructures
,”
Rep. Prog. Phys.
81
,
046501
(
2018
).
2.
R.
Mahjoub
,
V.
Nagarajan
, and
J.
Junquera
, “
Structural and electronic properties of monodomain ultrathin PbTiO3/SrTiO3/PbTiO3/SrRuO3 heterostructures: A first-principles approach
,”
J. Appl. Phys.
128
,
244102
(
2020
).
3.
D.
Misra
,
N. S.
Vidhyadhiraja
, and
A.
Taraphder
, “
A dynamical mean-field study of rare-earth nickelates
,”
J. Phys.: Conf. Ser.
592
,
012060
(
2015
).
4.
J. A.
Alonso
,
M. J.
Martınez-Lope
,
M. T.
Casais J
,
L.
Garcıa-Munoz
,
M. T.
Fernandez-Dıaz
, and
M. A. G.
Aranda
, “
High-temperature structural evolution of RNiO3 (R = Ho, Y, Er, Lu) perovskites: Charge disproportionation and electronic localization
,”
Phys. Rev. B
64
,
094102
(
2001
).
5.
J.
Ruppen
,
J.
Teyssier
,
O. E.
Peil
,
S.
Catalano
,
M.
Gibert
,
J.
Mravlje
,
J. M.
Triscone
,
A.
Georges
, and
D.
van der Marel
, “
Optical spectroscopy and the nature of the insulating state of rare-earth nickelates
,”
Phys. Rev. B
92
,
155145
(
2015
).
6.
Z.
Li
,
Y.
Zhou
,
H.
Qi
,
Q.
Pan
,
Z.
Zhang
,
N. N.
Shi
,
M.
Lu
,
A.
Stein
,
C. Y.
Li
,
S.
Ramanathan
, and
N.
Yu
, “
Correlated perovskites as a new platform for super-broadband-tunable photonics
,”
Adv. Mater.
28
,
9117
9125
(
2016
).
7.
Y.
Zhou
,
X.
Guan
,
H.
Zhou
,
K.
Ramadoss
,
S.
Adam
,
H.
Liu
,
S.
Lee
,
J.
Shi
,
M.
Tsuchiya
,
D. D.
Fong
, and
S.
Ramanathan
, “
Strongly correlated perovskite fuel cells
,”
Nature
534
,
231
234
(
2016
).
8.
Z.
Zhang
,
D.
Schwanz
,
B.
Narayanan
,
M.
Kotiuga
,
J. A.
Dura
,
M.
Cherukara
,
H.
Zhou
,
J. W.
Freeland
,
J.
Li
,
R.
Sutarto
,
F.
He
,
C.
Wu
,
J.
Zhu
,
Y.
Sun
,
K.
Ramadoss
,
S.
Nonnenmann
,
N.
Yu
,
R.
Comin
,
K.
Rabe
,
S. K. R. S.
Sankaranarayanan
, and
S.
Ramanathan
, “
Perovskite nickelates as electric-field sensors in salt water
,”
Nature
553
,
68
72
(
2018
).
9.
J.
Shi
,
S. D.
Ha
,
Y.
Zhou
,
F.
Schoofs
, and
S.
Ramanathan
, “
A correlated nickelate synaptic transistor
,”
Nat. Commun.
4
,
2676
(
2013
).
10.
M.
Medarde
,
P.
Lacorre
,
K.
Conder
,
F.
Fauth
, and
A.
Furrer
, “
Giant 16O–18O isotope effect on the metal–insulator transition of RNiO3 perovskites (R = rare earth)
,”
Phys. Rev. Lett.
80
,
2397
2400
(
1998
).
11.
N.
Wagner
,
D.
Puggioni
, and
J. M.
Rondinelli
, “
Learning from correlations based on local structure: Rare-earth nickelates revisited
,”
J. Chem. Inf. Model.
58
,
2491
2501
(
2018
).
12.
A.
Hampel
and
C.
Ederer
, “
Interplay between breathing mode distortion and magnetic order in rare-earth nickelates RNiO3 within DFT
+
U
,”
Phys. Rev. B
96
,
165130
(
2017
).
13.
A.
Mercy
,
J.
Bieder
,
J.
Íñiguez
, and
P.
Ghosez
, “
Structurally triggered metal-insulator transition in rare-earth nickelates
,”
Nat. Commun.
8
,
1677
(
2017
).
14.
P.
Yoo
and
P.
Liao
, “
Metal-to-insulator transition in SmNiO3 induced by chemical doping: A first principles study
,”
Mol. Syst. Des. Eng.
3
,
264
274
(
2018
).
15.
J.
Chen
,
W.
Mao
,
B.
Ge
,
J.
Wang
,
X.
Ke
,
V.
Wang
,
Y.
Wang
,
M.
Döbeli
,
W.
Geng
,
H.
Matsuzaki
,
J.
Shi
, and
Y.
Jiang
, “
Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3
,”
Nat. Commun.
10
,
694
(
2019
).
16.
M.
Kotiuga
and
K. M.
Rabe
, “
High-density electron doping of SmNiO3 from first principles
,”
Phys. Rev. Mater.
3
,
115002
(
2019
).
17.
P.
Yoo
and
P.
Liao
, “
First principles study on hydrogen doping induced metal-to-insulator transition in rare earth nickelates RNiO3 (R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb)
,”
Phys. Chem. Chem. Phys.
22
,
6888
6895
(
2020
).
18.
A.
Malashevich
,
M. S. J.
Marshall
,
C.
Visani
,
A. S.
Disa
,
H.
Xu
,
F. J.
Walker
,
C. H.
Ahn
, and
S.
Ismail-Beigi
, “
Controlling mobility in perovskite oxides by ferroelectric modulation of atomic-scale interface structure
,”
Nano Lett.
18
,
573
578
(
2018
).
19.
B.
Torriss
,
J.
Margot
, and
M.
Chaker
, “
Metal–insulator transition of strained SmNiO3 thin films: Structural, electrical and optical properties
,”
Sci. Rep.
7
,
40915
(
2017
).
20.
J.
Shi
,
Y.
Zhou
and
S.
Ramanathan
, “
Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping
,”
Nat. Commun.
5
,
4860
(
2014
).
21.
S.
Yao
,
P.
Yoo
, and
P.
Liao
, “
A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3
,”
Phys. Chem. Chem. Phys.
21
,
25397
25405
(
2019
).
22.
Y.
Sun
,
M.
Kotiuga
,
D.
Lim
,
B.
Narayanan
,
M.
Cherukara
,
Z.
Zhang
,
Y.
Dong
,
R.
Kou
,
C.
Sun
,
Q.
Lu
,
I.
Waluyo
,
A.
Hunt
,
H.
Tanaka
,
A. N.
Hattori
,
S.
Gamage
,
Y.
Abate
,
V. G.
Pol
,
H.
Zhou
,
S. R. S.
Sankaranarayanank
,
B.
Yildiz
,
K. M.
Rabe
, and
S.
Ramanathan
, “
Strongly correlated perovskite lithium ion shuttles
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
9672
9677
(
2018
).
23.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993
).
24.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
25.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
26.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
27.
Y.
Cui
,
J.
Ren
,
G.
Yang
, and
Y.
Gao
, “
First-principles study of intrinsic point defects and optical properties of SmNiO3
,”
J. Phys. Chem. A
125
,
356
365
(
2021
).
28.
Y.
Cui
,
S.
Shi
,
L.
Chen
,
H.
Luo
, and
Y.
Gao
, “
Hydrogen-doping induced reduction in the phase transition temperature of VO2: A first-principles study
,”
Phys. Chem. Chem. Phys.
17
,
20998
21004
(
2017
).
29.
C.
Kittel
,
P.
McEuen
, and
P.
McEuen
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1996
).
30.
L.
Yang
and
B. D.
Wirth
, “
First-principles study of hydrogen behavior near W/WC interfaces
,”
J. Appl. Phys.
127
,
115107
(
2020
).
31.
P.
Paranjape
,
S. G.
Srinivasan
, and
D.
Choudhuri
, “
Correlation between bonding, vacancy migration mechanisms, and creep in model binary and ternary hcp-Mg solid solutions
,”
J. Appl. Phys.
128
,
145103
(
2020
).
32.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
33.
M. L.
Medarde
, “
Structural, magnetic and electronic properties of perovskites (R = rare earth)
,”
J. Phys.: Condens. Matter
9
,
1679
(
1997
).
34.
J.
Varignon
,
M. N.
Grisolia
,
J.
Íñiguez
,
A.
Barthélémy
, and
M.
Bibes
, “
Complete phase diagram of rare-earth nickelates from first-principles
,”
npj Quantum Mater.
2
,
21
(
2017
).
35.
S.
Catalano
,
M.
Gibert
,
V.
Bisogni
,
O. E.
Peil
,
F.
He
,
R.
Sutarto
,
M.
Viret
,
P.
Zubko
,
R.
Scherwitzl
,
A.
Georges
,
G. A.
Sawatzky
,
T.
Schmitt
, and
J. M.
Triscone
, “
Electronic transitions in strained SmNiO3 thin films
,”
APL Mater.
2
,
116110
(
2014
).
36.
F.
Zuo
,
P.
Panda
,
M.
Kotiuga
,
J.
Li
,
M.
Kang
,
C.
Mazzoli
,
H.
Zhou
,
A.
Barbour
,
S.
Wilkins
,
B.
Narayanan
,
M.
Cherukara
,
Z.
Zhang
,
S. K. R. S.
Sankaranarayanan
,
R.
Comin
,
K. M.
Rabe
,
K.
Roy
, and
S.
Ramanathan
, “
Habituation based synaptic plasticity and organismic learning in a quantum perovskite
,”
Nat. Commun.
1
,
240
(
2017
).

Supplementary Material

You do not currently have access to this content.