We present a design to achieve antichiral edge states in acoustic systems where edge states on the two parallel edges of a lattice with a strip geometry propagate in the same direction. This peculiar phenomenon is realized by using a honeycomb lattice consisting of acoustic resonators with staggered air flow; i.e., the air flow takes opposite directions in resonators belonging to different sublattices. The existence of antichiral edge states is revealed through full-wave simulations of the band structure and acoustic fields excited by a point source. Furthermore, we compare these antichiral edge states with conventional chiral edge states. It is found that the antichiral edge states are less robust than the chiral ones. Our work offers new possibilities for dispersion engineering and wave manipulations in acoustics.

1.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
2.
X.-L.
Qi
and
S.-C.
Zhang
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
(
2011
).
3.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photon.
8
,
821
(
2014
).
4.
A. B.
Khanikaev
and
G.
Shvets
, “
Two-dimensional topological photonics
,”
Nat. Photon.
11
,
763
(
2017
).
5.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
et al., “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
6.
G.
Ma
,
M.
Xiao
, and
C. T.
Chan
, “
Topological phases in acoustic and mechanical systems
,”
Nat. Rev. Phys.
1
,
281
(
2019
).
7.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the parity anomaly
,”
Phys. Rev. Lett.
61
,
2015
(
1988
).
8.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
9.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
10.
E.
Colomés
and
M.
Franz
, “
Antichiral edge states in a modified Haldane nanoribbon
,”
Phys. Rev. Lett.
120
,
086603
(
2018
).
11.
S.
Mandal
,
R.
Ge
, and
T. C. H.
Liew
, “
Antichiral edge states in an exciton polariton strip
,”
Phys. Rev. B
99
,
115423
(
2019
).
12.
D.
Bhowmick
and
P.
Sengupta
, “
Antichiral edge states in Heisenberg ferromagnet on a honeycomb lattice
,”
Phys. Rev. B
101
,
195133
(
2020
).
13.
J.
Chen
,
W.
Liang
, and
Z.-Y.
Li
, “
Antichiral one-way edge states in a gyromagnetic photonic crystal
,”
Phys. Rev. B
101
,
214102
(
2020
).
14.
C.
Wang
,
L.
Zhang
,
P.
Zhang
,
J.
Song
, and
Y.-X.
Li
, “
Influence of antichiral edge states on Andreev reflection in graphene-superconductor junction
,”
Phys. Rev. B
101
,
045407
(
2020
).
15.
M. M.
Denner
,
J.
Lado
, and
O.
Zilberberg
, “
Antichiral states in twisted graphene multilayers
,”
Phys. Rev. Res.
2
,
043190
(
2020
).
16.
P.
Zhou
,
G.-G.
Liu
,
Y.
Yang
,
Y.-H.
Hu
,
S.
Ma
,
H.
Xue
,
Q.
Wang
,
L.
Deng
, and
B.
Zhang
, “
Observation of photonic antichiral edge states
,”
Phys. Rev. Lett.
125
,
263603
(
2020
).
17.
Y.
Yang
,
D.
Zhu
,
Z. H.
Hang
, and
Y.
Chong
, “Observation of antichiral edge states in a circuit lattice,” arXiv:2008.10161 (2020).
18.
Z.
Yang
,
F.
Gao
,
X.
Shi
,
X.
Lin
,
Z.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
(
2015
).
19.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alu
, “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
20.
X.
Ni
,
C.
He
,
X.-C.
Sun
,
X.-P.
Liu
,
M.-H.
Lu
,
L.
Feng
, and
Y.-F.
Chen
, “
Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow
,”
New J. Phys.
17
,
053016
(
2015
).
21.
Y.
Ding
,
Y.
Peng
,
Y.
Zhu
,
X.
Fan
,
J.
Yang
,
B.
Liang
,
X.
Zhu
,
X.
Wan
, and
J.
Cheng
, “
Experimental demonstration of acoustic Chern insulators
,”
Phys. Rev. Lett.
122
,
014302
(
2019
).
22.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
(
2016
).
23.
W.
Deng
,
X.
Huang
,
J.
Lu
,
V.
Peri
,
F.
Li
,
S. D.
Huber
, and
Z.
Liu
, “
Acoustic spin-Chern insulator induced by synthetic spin–orbit coupling with spin conservation breaking
,”
Nat. Commun.
11
,
3227
(
2020
).
24.
J.
Lu
,
C.
Qiu
,
M.
Ke
, and
Z.
Liu
, “
Valley vortex states in sonic crystals
,”
Phys. Rev. Lett.
116
,
093901
(
2016
).
25.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
(
2017
).
26.
M.
Xiao
,
W.-J.
Chen
,
W.-Y.
He
, and
C. T.
Chan
, “
Synthetic gauge flux and Weyl points in acoustic systems
,”
Nat. Phys.
11
,
920
(
2015
).
27.
Z.
Yang
and
B.
Zhang
, “
Acoustic type-II Weyl nodes from stacking dimerized chains
,”
Phys. Rev. Lett.
117
,
224301
(
2016
).
28.
F.
Li
,
X.
Huang
,
J.
Lu
,
J.
Ma
, and
Z.
Liu
, “
Weyl points and Fermi arcs in a chiral phononic crystal
,”
Nat. Phys.
14
,
30
(
2018
).
29.
H.
Ge
,
X.
Ni
,
Y.
Tian
,
S. K.
Gupta
,
M.-H.
Lu
,
X.
Lin
,
W.-D.
Huang
,
C. T.
Chan
, and
Y.-F.
Chen
, “
Experimental observation of acoustic Weyl points and topological surface states
,”
Phys. Rev. Appl.
10
,
014017
(
2018
).
30.
H.
Xue
,
Y.
Yang
,
F.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Acoustic higher-order topological insulator on a kagome lattice
,”
Nat. Mater.
18
,
108
(
2019
).
31.
X.
Ni
,
M.
Weiner
,
A.
Alu
, and
A. B.
Khanikaev
, “
Observation of higher-order topological acoustic states protected by generalized chiral symmetry
,”
Nat. Mater.
18
,
113
(
2019
).
32.
X.
Zhang
,
H.-X.
Wang
,
Z.-K.
Lin
,
Y.
Tian
,
B.
Xie
,
M.-H.
Lu
,
Y.-F.
Chen
, and
J.-H.
Jiang
, “
Second-order topology and multidimensional topological transitions in sonic crystals
,”
Nat. Phys.
15
,
582
(
2019
).
33.
H.
Xue
,
Y.
Yang
,
G.
Liu
,
F.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Realization of an acoustic third-order topological insulator
,”
Phys. Rev. Lett.
122
,
244301
(
2019
).
34.
X.
Zhang
,
B.-Y.
Xie
,
H.-F.
Wang
,
X.
Xu
,
Y.
Tian
,
J.-H.
Jiang
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals
,”
Nat. Commun.
10
,
5331
(
2019
).
35.
M.
Weiner
,
X.
Ni
,
M.
Li
,
A.
Alù
, and
A. B.
Khanikaev
, “
Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial
,”
Sci. Adv.
6
,
eaay4166
(
2020
).
36.
W.
Zhu
,
X.
Fang
,
D.
Li
,
Y.
Sun
,
Y.
Li
,
Y.
Jing
, and
H.
Chen
, “
Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system
,”
Phys. Rev. Lett.
121
,
124501
(
2018
).
37.
H.
Gao
,
H.
Xue
,
Q.
Wang
,
Z.
Gu
,
T.
Liu
,
J.
Zhu
, and
B.
Zhang
, “
Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal
,”
Phys. Rev. B
101
,
180303
(
2020
).
38.
H.
Gao
,
H.
Xue
,
Z.
Gu
,
T.
Liu
,
J.
Zhu
, and
B.
Zhang
, “Non-Hermitian route to higher-order topology in an acoustic crystal,” arXiv:2007.01041 (2020).
39.
M. E.
Goldstein
,
Aeroacoustics
(
McGraw-Hill
,
New York
,
1976
).

Supplementary Material

You do not currently have access to this content.