Silver and gold nanoparticles were produced using the pinhole discharge generated by dc non-pulsing high voltage directly in a precursor solution. Silver nitrate solution was used as the precursor for silver nanoparticles, and chloroauric acid was used as the precursor for gold nanoparticles. Effects of discharge time, precursor concentration, and additives such as reduction agent (ethylene glycol) and capping agent (polyethylene glycol and sucrose) were studied. Nanoparticles were mainly analyzed by UV-VIS spectrometry. The size of prepared nanoparticles was determined by the dynamic light scattering with backscattering detection. To determine the stability of nanoparticles, the zeta potential was measured by the electrophoretic light scattering. It was found that the absorption maximum of nanoparticles increases with the time of the discharge treatment and concentration of the precursor. The size of silver nanoparticles ranged from 10 to 1000 nm and the final solution had higher polydispersity. The size of Au nanoparticles ranged from 10 to 100 nm, depending on the precursor concentration. The most stable particles were prepared from the pure precursor solution without any additives. The addition of ethylene glycol stimulated the reduction process of nanoparticles from the solution but it decreased their zeta potential. Final particles were less stable, which started to form larger structures that tended to sediment. Added capping agent decreased the input of power needed for the stable discharge operation. The formation of silver and gold nanoparticles was confirmed by scanning electron microscopy with the energy dispersion spectrometer. Both silver and gold particles had spherical shapes.

1.
S.
Horikoshi
and
N.
Serpone
,
Microwaves in Nanoparticle Synthesis: Fundamentals and Applications
(
Wiley-VCH Verlag GmbH Co. KGaA
,
2013
).
2.
D. L.
Fedlheim
and
C.
Foss
,
Metal Nanoparticles: Synthesis, Characterization, and Applications
(
CRC Press
,
2001
).
3.
G.
Sharma
,
D.
Kumar
,
A.
Kumar
,
A. H.
Al-Muhtaseb
,
D.
Pathania
,
M.
Naushad
, and
G. T.
Mola
,
Mater. Sci. Eng. C
71
,
1216
1230
(
2017
).
4.
A.
Rahnama
and
M.
Gharagozlou
,
Opt. Quantum Electron.
44
,
313
322
(
2012
).
5.
W.
Choi
and
J.
Lee
,
Graphene: Synthesis and Applications
(
CRC Press
,
2011
).
6.
P. R.
Sharma
,
K. D.
Trimukhe
, and
A. J.
Varma
,
Trends Carbohydr. Res.
7
,
1
5
(
2015
).
7.
N. K.
Rajendran
,
S. S. D.
Kumar
,
N. N.
Houreld
, and
H.
Abrahamse
,
J. Drug Delivery Sci. Technol.
44
,
421
430
(
2018
).
8.
D.
Peukert
,
I.
Kempson
,
M.
Douglass
, and
E.
Bezak
,
Physica Medica
47
,
121
128
(
2018
).
9.
B.
Pejjai
,
V.
Reddy
,
S.
Gedi
, and
C.
Park
,
Int. J. Hydrogen Energy
42
,
2790
2831
(
2017
).
10.
S. A.
Paknejad
and
S. H.
Mannan
,
Microelectron. Reliab.
70
,
1
11
(
2017
).
11.
V. V.
Mody
,
R.
Siwale
,
A.
Singh
, and
H. R.
Mody
,
J. Pharm. Bioall. Sci.
2
(
4
),
282
289
(
2012
).
12.
A.
Singh
,
V.
Viswanath
, and
V.
Janu
,
J. Lumin.
129
,
874
878
(
2009
).
13.
S.
Jaiswal
,
B.
Duffy
,
A.
Jaiswal
,
N.
Stobie
, and
P.
McHale
,
Int. J. Antimicrob. Agents
36
,
280
283
(
2010
).
14.
D.
Ling
and
T.
Hyeon
,
Small
9
,
1450
1466
(
2013
).
15.
K. M. A.
El-Nour
,
A.
Eftaiha
, and
A.
Al-Warthan
,
Arab. J. Chem.
3
,
135
140
(
2010
).
16.
L. F.
de Freitas
,
G. H. C.
Varca
, and
J. G. D. S.
Batista
,
Nanomaterials
8
,
939
(
2018
).
17.
H.
Wang
,
X.
Qiao
,
J.
Chen
, and
S.
Ding
,
Colloids Surf. A
2568
,
111
115
(
2005
).
18.
Y.
Zhou
,
S.
Yu
,
C.
Wang
,
X.
Li
,
Y.
Zhu
, and
Z.
Chen
,
Adv. Mater.
11
,
850
852
(
1999
).
19.
H.
Ma
,
B.
Yin
,
S.
Wang
,
Y.
Jiao
,
W.
Pan
,
S.
Huang
,
S.
Chen
, and
F.
Meng
,
ChemPhysChem
5
,
68
75
(
2004
).
20.
S.
Iravani
,
H.
Korbekandi
,
S.
Mirmohammadi
, and
B.
Zolfaghari
,
Res. Pharm. Sci.
9
(
6
),
385
406
(
2014
).
21.
P.
Pootawang
,
N.
Saito
, and
S.
Lee
,
Nanotechnology
24
(
5
),
055604
(
2012
).
22.
T.
Yoshida
,
N.
Yamamoto
,
T.
Mizutani
,
M.
Yamamoto
,
S.
Ogawa
,
S.
Yagi
,
H.
Nameki
, and
H.
Yoshida
,
Catal. Today
303
,
320
326
(
2018
).
23.
J.
Lung
,
J.
Huang
, and
D.
Tien
,
J. Alloys Compd.
434–435
,
655
658
(
2007
).
24.
N.
Saito
,
J.
Hieda
, and
O.
Takai
,
Thin Solid Films
518
,
912
917
(
2009
).
25.
M.
Nishimoto
,
T.
Yonezawa
, and
D.
Čempel
,
Mater. Chem. Phys.
193
,
7
12
(
2017
).
26.
S.
Sato
,
K.
Mori
, and
O.
Ariyada
,
Surf. Coat. Technol.
206
(
5
),
955
958
(
2011
).
27.
H.
Lee
,
S.
Park
, and
S.
Jung
,
J. Mater. Res.
28
(
8
),
1105
1110
(
2013
).
28.
V. S. S.
Kondeti
,
U.
Gangal
,
S.
Yatom
, and
P.
Bruggeman
,
J. Vac. Sci. Technol. A
35
,
061302
(
2017
).
29.
F.
Krčma
,
Z.
Kozáková
,
V.
Mazánková
,
J.
Horák
,
L.
Dostál
,
B.
Obradovič
,
A.
Nikiforov
, and
T.
Belmonte
,
Plasma Sources Sci. Technol.
27
,
065001
(
2018
).
30.
F.
Krčma
, “Jet system for plasma generation in liquids,” Czech Republic patent CZ305304B6 (2015).
31.
F.
Krčma
, “Jet system for plasma generation in liquids,” Protected construction CZ27173 (2015).
32.
F.
Krčma
, “Jet system for plasma generation in liquids,” European patent EP3122161B1 (2019).
33.
Z.
Kozáková
,
F.
Krčma
,
M.
Vašček
,
L.
Hlavatá
, and
L.
Hlochová
,
Eur. Phys. Chem. J. D
69
,
100
(
2015
).
34.
D.
Bhui
,
H.
Bar
,
P.
Sarkar
,
G.
Sahoo
,
S.
De
, and
A.
Misra
,
J. Mol. Liq.
145
,
33
37
(
2009
).
35.
F.
Krčma
,
Z.
Stará
, and
J.
Prochazková
,
J. Phys.: Conf. Ser.
207
,
012010
(
2010
).
36.
Z.
Kozáková
,
F.
Krčma
,
L.
Čechová
,
S.
Simic
, and
L.
Doskočil
,
Plasma Phys. Technol.
6
,
180
183
(
2019
).
37.
V.
Amendola
and
M.
Meneghetti
,
J. Phys. Chem. C
113
,
4277
4285
(
2009
).
You do not currently have access to this content.