In this work, the main peculiarities of Laser Induced Plasma (LIP) in liquid have been investigated by comparing the evolution of the LIP in water and in air. To this end, fast shadowgraphy and temporally resolved emission spectroscopy were used. The experimental results reveal a scenario where plasma under water remains in a high-density state, characterized by the condensation of electronic levels as a consequence of the confinement effect of the surrounding water. In this case, the plasma emission spectrum consists of continuum radiation. In contrast, LIP in air expands, reaching an ideal plasma state in a few hundred nanoseconds. In this condition, excited electronic levels are enabled and the spectrum is characterized by discrete emission lines, according to the Boltzmann statistics. These differences allow LIP in liquid and gas to be used in a wide variety of applications, ranging from analytical chemistry to nanomaterial production.

1.
C.
Phipps
,
M.
Birkan
,
W.
Bohn
,
H. A.
Eckel
,
H.
Horisawa
,
T.
Lippert
,
M.
Michaelis
,
Y.
Rezunkov
,
A.
Sasoh
,
W.
Schall
,
S.
Scharring
, and
J.
Sinko
, “
Review: Laser ablation propulsion
,”
J. Propul. Power
26
,
609
637
(
2010
).
2.
W.
Zhang
and
Z.
Hu
, “
A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry
,”
Spectrochim. Acta, Part B: At. Spectrosc.
171
,
105929
(
2020
).
3.
D. B.
Chrisey
and
G. K.
Huber
,
Pulsed Laser Deposition of Thin Films
(
Wiley Interscience
,
New York
,
1987
).
4.
E.
Fazio
,
B.
Gökce
,
A.
De Giacomo
,
M.
Meneghetti
,
G.
Compagnini
,
M.
Tommasini
,
F.
Waag
,
A.
Lucotti
,
C. G.
Zanchi
,
P. M.
Ossi
,
M.
Dell’Aglio
,
L.
D’Urso
,
M.
Condorelli
,
V.
Scardaci
,
F.
Biscaglia
,
L.
Litti
,
M.
Gobbo
,
G.
Gallo
,
M.
Santoro
,
S.
Trusso
, and
F.
Neri
, “
Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications
,”
Nanomaterials
10
,
2317
(
2020
).
5.
M.
Cui
,
Y.
Deguchi
,
Z.
Wang
,
S.
Tanaka
,
B.
Xue
,
C.
Yao
, and
D.
Zhang
, “
Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta, Part B: At. Spectrosc.
168
,
105873
(
2020
).
6.
S.
Kohsakowski
,
A.
Santagata
,
M.
Dell'Aglio
,
A.
De Giacomo
,
S.
Barcikowski
,
P.
Wagener
, and
B.
Gökce
, “
High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet
,”
Appl. Surf. Sci.
403
,
487
499
(
2017
).
7.
A.
De Giacomo
,
M.
Dell'Aglio
,
R.
Gaudiuso
,
S.
Amoruso
, and
O.
De Pascale
, “
Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas
,”
Spectrochim. Acta, Part B At. Spectrosc.
78
,
1
19
(
2012
).
8.
J. A. M.
Van der Mullen
, “
Excitation equilibria in plasmas: A classification
,”
Phys. Rep.
191
(
2-3
),
109
220
(
1990
).
9.
A.
De Giacomo
,
M.
Dell'Aglio
,
O.
De Pascale
,
R.
Gaudiuso
,
V.
Palleschi
, and
C.
Parigger
,
A.
Woods
, “
Plasma processes and emission spectra in laser induced plasmas: A point of view
,”
Spectrochim. Acta, Part B: At. Spectrosc.
100
,
180
188
(
2014
).
10.
L. J.
Radziemski
and
D. A.
Cremers
,
Laser-Induced Plasma and Applications
(
Marcel Dekker
,
New York
,
1989
).
11.
T. X.
Phuoc
, “
Laser spark ignition: Experimental determination of laser-induced breakdown thresholds of combustion gases
,”
Opt. Commun.
175
,
419
423
(
2000
).
12.
A.
De Giacomo
,
R.
Alrifai
,
V.
Gardette
,
Z.
Salajková
, and
M.
Dell'Aglio
, “
Nanoparticle enhanced laser ablation and consequent effects on laser induced plasma optical emission
,”
Spectrochim. Acta, Part B: At. Spectrosc.
166
,
105794
(
2020
).
13.
L. M.
Cabalín
and
J. J.
Laserna
, “
Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation
,”
Spectrochim. Acta, Part B: At. Spectrosc.
53
,
723
730
(
1998
).
14.
A.
De Giacomo
,
R.
Gaudiuso
,
C.
Koral
,
M.
Dell’Aglio
, and
O.
De Pascale
, “
Nanoparticles enhanced laser induced breakdown spectroscopy on metallic samples
,”
Anal. Chem.
85
,
10180
10187
(
2013
).
15.
M.
Dell'Aglio
and
A.
De Giacomo
, “
Plasma charging effect on the nanoparticles releasing from the cavitation bubble to the solution during nanosecond pulsed laser ablation in liquid
,”
Appl. Surf. Sci.
515
,
146031
.
16.
M.
Gaft
,
L.
Nagli
,
I.
Gornushkin
, and
Y.
Raichlin
, “
Review on recent advances in analytical applications of molecular emission and modelling
,”
Spectrochim. Acta, Part B: At. Spectrosc.
173
,
105989
(
2020
).
17.
S. S.
Harilal
,
G. V.
Miloshevsky
,
P. K.
Diwakar
,
N. L.
LaHaye
, and
A.
Hassanein
, “
Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere
,”
Phys. Plasmas
19
,
083504
(
2012
).
18.
M.
Dell'Aglio
,
V.
Motto-Ros
,
F.
Pelascini
,
I. B.
Gornushkin
, and
A.
De Giacomo
, “
Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation
,”
Plasma Sources Sci. Technol.
28
,
085017
(
2019
).
19.
G.
Cristoforetti
,
A.
De Giacomo
,
M.
Dell'Aglio
,
S.
Legnaioli
,
E.
Tognoni
,
V.
Palleschi
, and
N.
Omenetto
, “
Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: Beyond the McWhirter criterion
,”
Spectrochim. Acta, Part B
65
(
1
),
86
95
(
2010
).
20.
See for NIST Atomic database (version 5.8).
21.
A.
De Giacomo
,
M.
Dell'Aglio
,
R.
Gaudiuso
,
A.
Santagata
,
G. S.
Senesi
,
M.
Rossi
,
M. R.
Ghiara
,
F.
Capitelli
, and
O.
De Pascale
, “
A laser induced breakdown spectroscopy application based on local thermodynamic equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys
,”
Chem. Phys.
398
(
1
),
233
238
(
2012
).
22.
T.
Sakka
,
S.
Iwanaga
,
Y. H.
Ogata
,
A.
Matsunawa
, and
T.
Takemoto
, “
Laser ablation at solid-liquid interfaces: An approach from optical emission spectra
,”
J. Chem. Phys.
112
(
19
),
8645
8653
(
2000
).
23.
M.
Capitelli
,
G.
Colonna
, and
A.
D’Angola
,
Fundamental Aspects of Plasma Chemical Physics
(
Springer
,
2012
).
24.
H. R.
Griem
,
Principles of Plasma Spectroscopy
(
Cambridge University Press
,
1997
).
25.
Y. Y.
Qi
,
J. G.
Wang
, and
R. K.
Janev
, “
Dynamics of photoionization of hydrogenlike ions in Debye plasmas
,”
Phys. Rev. A
80
(
6
),
063404
(
2009
).
26.
S.
Mazevet
,
M. P.
Desjarlais
,
L. A.
Collins
,
J. D.
Kress
, and
N. H.
Magee
, “
Simulations of the optical properties of warm dense aluminum
,”
Phys. Rev. E
71
(
1
),
016409
(
2005
).
27.
J.
Manrique
,
J. A.
Aguilera
, and
C.
Aragón
, “
Experimental Stark widths and shifts of Ti II spectral lines
,”
Mon. Not. R. Astron. Soc.
462
,
1501
1507
(
2016
).
28.
G.
Manfredi
, “
How to model quantum plasmas
,”
Field Inst. Commun.
46
,
263
287
(
2005
).
29.
M.
Dell'Aglio
,
A.
Santagata
,
G.
Valenza
,
A.
De Stradis
, and
A.
De Giacomo
, “
Study of the effect of water pressure on plasma and cavitation bubble induced by pulsed laser ablation in liquid of silver and missed variations of observable nanoparticle features
,”
ChemPhysChem
18
(
9
),
1165
1174
(
2017
).
30.
D.
Zhang
,
B.
Gökce
, and
S.
Barcikowski
, “
Laser synthesis and processing of colloids: Fundamentals and applications
,”
Chem. Rev.
117
(
5
),
3990
4103
(
2017
).
You do not currently have access to this content.