The gas temperature is a key parameter that affects the process of microwave plasma chemistry in industrial applications. Based on the molecular emission spectrometry of the A2Σ+X2Πr electronic system of OH radicals, the gas temperature of the atmospheric air microwave plasma core at different absorbed microwave power levels, gas flow rates, gas humidities, and volume fractions of CO2 in air was analyzed. In the experiment, the absorbed microwave power, gas flow rate, gas humidity, and volume ratio of CO2 in air was varied from 560 to 1750 W, 10 to 24 l min−1, 30% to 95%, and 0% to 40%, respectively. Moreover, the axial gas temperature distribution of the plasma torch was measured. The experimental results showed that (i) the plasma gas temperature mainly ranged from 4000 to 7000 K, (ii) the plasma gas temperature rose with increasing absorbed microwave power but was hardly affected by the feeding gas flow rate, (iii) the plasma gas temperature decreased by ∼400 K for every 20% increase in the fraction of CO2 in air and decreased with increasing gas humidity, and (iv) the plasma torch gas temperature decreased along the axial direction. Due to the lack of a prevailing microwave discharge theory, an in-depth analysis of the mechanisms of gas temperature variation was performed based on the heat balance equation.

1.
H. S.
Uhm
,
Y. C.
Hong
, and
D. H.
Shin
,
Plasma Sources Sci. Technol.
15
,
S26
(
2006
).
2.
C.
Tendero
,
C.
Tixier
,
P.
Tristant
,
J.
Desmaison
, and
P.
Leprince
,
Spectrochim. Acta Part B At. Spectrosc.
61
,
2
(
2006
).
3.
P.-H.
Tsai
and
H.-Y.
Tsai
,
Carbon
136
,
1
(
2018
).
4.
C.
Scheffler
,
E.
Wölfel
,
T.
Förster
,
C.
Poitzsch
,
L.
Kotte
, and
G.
Mäder
,
IOP Conf. Ser. Mater. Sci. Eng.
139
,
012046
(
2016
).
5.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
,
5805
(
2017
).
6.
T. Y.
Wang
,
B. Y.
Zhang
,
D. Y.
Li
,
Y. C.
Hou
, and
G. X.
Zhang
,
Nanotechnology
31
,
324001
(
2020
).
7.
X. M.
Tao
,
M. G.
Bai
,
X. A.
Li
,
H. L.
Long
,
S. Y.
Shang
,
Y. X.
Yin
, and
X. Y.
Dai
,
Prog. Energy Combust. Sci.
37
,
113
(
2011
).
8.
W.-C.
Chung
and
M.-B.
Chang
,
Renewable Sustainable Energy Rev.
62
,
13
(
2016
).
9.
A.
Bogaerts
,
A.
Berthelot
,
S.
Heijkers
,
S.
Kolev
,
R.
Snoeckx
,
S.
Sun
,
G.
Trenchev
,
K.
Van Laer
, and
W.
Wang
,
Plasma Sources Sci. Technol.
26
,
063001
(
2017
).
10.
W.
Wang
,
R.
Snoeckx
,
X.
Zhang
,
M. S.
Cha
, and
A.
Bogaerts
,
J. Phys. Chem. C
122
,
8704
(
2018
).
11.
R.
Snoeckx
,
W.
Wang
,
X.
Zhang
,
M. S.
Cha
, and
A.
Bogaerts
,
Sci. Rep.
8
,
15929
(
2018
).
12.
T.
Shao
,
Y.
Zhou
,
C.
Zhang
,
W.
Yang
,
Z.
Niu
, and
C.
Ren
,
IEEE Trans. Dielectr. Electr. Insul.
22
,
1747
(
2015
).
13.
H.
Yu
,
L.
Gong
,
Z.
Qu
,
P.
Hao
,
J.
Liu
, and
L.
Fu
,
Colloid Interface Sci. Commun.
36
,
100266
(
2020
).
14.
L.
He
,
A.
Karumuri
, and
S. M.
Mukhopadhyay
,
RSC Adv.
7
,
25265
(
2017
).
15.
D.
Li
,
A.
Nikiforov
,
N.
Britun
,
R.
Snyders
,
M. G.
Kong
, and
C.
Leys
,
J. Phys. D: Appl. Phys.
49
,
455202
(
2016
).
16.
L.
Bónová
,
W.
Zhu
,
D. K.
Patel
,
D. V.
Krogstad
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. A
38
,
023002
(
2020
).
17.
T.
Wang
,
G.
Zhang
,
D.
Li
,
Y.
Hou
, and
B.
Zhang
,
IEEE Trans. Dielectr. Electr. Insul.
27
,
939
(
2020
).
18.
P. J.
Bruggeman
,
N.
Sadeghi
,
D. C.
Schram
, and
V.
Linss
,
Plasma Sources Sci. Technol.
23
,
023001
(
2014
).
19.
Y. C.
Hong
,
S. M.
Chun
,
C. H.
Cho
,
D. H.
Shin
, and
D. H.
Choi
,
IEEE Trans. Plasma Sci.
43
,
696
(
2015
).
20.
R.
Miotk
,
B.
Hrycak
,
M.
Jasinski
, and
J.
Mizeraczyk
,
J. Phys.: Conf. Ser.
406
,
012033
(
2012
).
21.
B.
Hrycak
,
M.
Jasiński
, and
J.
Mizeraczyk
,
J. Phys.: Conf. Ser.
406
,
012037
(
2012
).
22.
C.-J.
Chen
and
S.-Z.
Li
,
Plasma Sources Sci. Technol.
24
,
035017
(
2015
).
23.
S.
Huang
,
C.
Liu
,
Z.
Jie
, and
G.
Zhang
,
IEEE Trans. Plasma Sci.
48
,
2153
(
2020
).
24.
L.
Deng
,
G. X.
Zhang
,
C.
Liu
, and
H.
Xie
,
Spectrosc. Spectral Anal.
38
,
627
(
2018
).
25.
X.
Zhai
,
Y.
Ding
,
Z.
Peng
,
L.
Chen
, and
R.
Luo
,
J. Tsinghua. Univ. (Sci. Tech.)
52
,
980
(
2012
).
26.
C. O.
Laux
,
T. G.
Spence
,
C. H.
Kruger
, and
R. N.
Zare
,
Plasma Sources Sci. Technol.
12
,
125
(
2003
).
27.
P.
Bruggeman
,
F.
Iza
,
P.
Guns
,
D.
Lauwers
,
M. G.
Kong
,
Y. A.
Gonzalvo
,
C.
Leys
, and
D. C.
Schram
,
Plasma Sources Sci. Technol.
19
,
015016
(
2010
).
28.
J.
Luque
and
D. R.
Crosley
, SRI International Report MP 99, 1999.
29.
W.
Zhang
,
L.
Wu
,
K.
Huang
, and
J.
Tao
,
Phys. Plasmas
26
,
042101
(
2019
).
30.
J. H.
Kim
,
Y. C.
Hong
,
H. S.
Kim
, and
H. S.
Kim
,
J. Korean Phys. Soc.
42
,
S876
(
2003
); available at https://www.semanticscholar.org/paper/Simple-microwave-plasma-source-at-atmospheric-Kim-Hong/7d37df9fbfa420d64702de81e67d2f907215968c#related-papers
31.
X.
Wang
,
High Voltage Eng.
35
,
1
(
2009
).
32.
Y.
Yang
,
W.
Hua
, and
S. Y.
Guo
,
Phys. Plasmas
21
,
040702
(
2014
).
33.
Y.
Kabouzi
,
D. B.
Graves
,
E.
Castaños-Martínez
, and
M.
Moisan
,
Phys. Rev. E
75
,
016402
(
2007
).
34.
J.
Henriques
,
E.
Tatarova
, and
C. M.
Ferreira
,
J. Appl. Phys.
109
,
023301
(
2011
).
35.
M.
Baeva
,
A.
Bösel
,
J.
Ehlbeck
, and
D.
Loffhagen
,
Phys. Rev. E
85
,
056404
(
2012
).
36.
M.
Leins
,
M.
Walker
,
A.
Schulz
,
U.
Schumacher
, and
U.
Stroth
,
Contrib. Plasma Phys.
52
,
615
(
2012
).
37.
Q.
Zhang
,
G.
Zhang
,
L.
Wang
,
X.
Wang
,
S.
Wang
, and
Y.
Chen
,
Appl. Phys. Lett.
95
,
201502
(
2009
).
38.
R. L.
Mills
,
P. C.
Ray
,
R. M.
Mayo
,
M.
Nansteel
,
B.
Dhandapani
, and
J.
Phillips
,
J. Plasma Phys.
71
,
877
888
(
2005
).
39.
P.
Rawat
,
K. P.
Subramanian
, and
V.
Kumar
,
Pramana
50
,
447
(
1998
).
40.
O.
Sueoka
,
S.
Mori
, and
Y.
Katayama
,
J. Phys. B: At. Mol. Phys.
19
,
L373
(
1986
).
41.
R.
Naghma
,
M.
Vinodkumar
, and
B.
Antony
,
Radiat. Phys. Chem.
97
,
6
(
2014
).
42.
D. M.
Devia
,
L. V.
Rodriguez-Restrepo
, and
E.
Restrepo-Parra
,
Ing. Cienc.
11
,
239
(
2015
).
43.
D. C. M.
van den Bekerom
,
J. M. P.
Linares
,
T.
Verreycken
,
E. M.
van Veldhuizen
,
S.
Nijdam
,
G.
Berden
,
W. A.
Bongers
,
M. C. M.
van de Sanden
, and
G. J.
van Rooij
,
Plasma Sources Sci. Technol.
28
,
055015
(
2019
).
44.
D.
Mariotti
,
Y.
Shimizu
,
T.
Sasaki
, and
N.
Koshizaki
,
J. Appl. Phys.
101
,
013307
(
2007
).
45.
S.-Z.
Li
,
C.-J.
Chen
,
X.
Zhang
,
J.
Zhang
, and
Y.-X.
Wang
,
Plasma Sources Sci. Technol.
24
,
025003
(
2015
).
46.
R.
Kalbasi
,
S. M.
Alaeddin
,
M.
Akbari
, and
M.
Afrand
,
Symmetry
11
,
1522
(
2019
).
47.
P. K.
Chu
and
X.
Lu
,
Low Temperature Plasma Technology: Methods and Applications
(
CRC Press
,
Boca Raton
,
FL
,
2013
).
48.
P.
Bruggeman
and
R.
Brandenburg
,
J. Phys. D: Appl. Phys.
46
,
464001
(
2013
).
49.
H. S.
Kwak
,
H. S.
Uhm
,
Y. C.
Hong
, and
E. H.
Choi
,
Sci. Rep.
5
,
18436
(
2015
).
50.
N.
den Harder
,
D. C. M.
van den Bekerom
,
R. S.
Al
,
M. F.
Graswinckel
,
J. M.
Palomares
,
F. J. J.
Peeters
,
S.
Ponduri
,
T.
Minea
,
W. A.
Bongers
,
M. C. M.
van de Sanden
, and
G. J.
van Rooij
,
Plasma Processes Polym.
14
,
1600120
(
2016
).
51.
A. C.
Gentile
and
M. J.
Kushner
,
Appl. Phys. Lett.
68
,
2064
(
1996
).
52.
S.
Sintsov
,
A.
Vodopyanov
, and
D.
Mansfeld
,
AIP Adv.
9
,
105009
(
2019
).
53.
M. I.
Boulos
,
P. L.
Fauchais
, and
E.
Pfender
,
Handbook of Thermal Plasmas
(Springer International Publishing,
2015
), p.
1
.
54.
A. K.
Kagoné
,
Z.
Koalaga
, and
F.
Zougmoré
,
IOP Conf. Ser. Mater. Sci. Eng.
29
,
012004
(
2012
).
55.
Z.
Koalaga
,
M.
Abbaoui
, and
A.
Lefort
,
J. Phys. D: Appl. Phys.
26
,
393
(
1993
).
56.
C. M.
Ferreira
and
M.
Moisan
,
Microwave Discharges Fundamentals and Applications
(
Plenum Press
,
New York
,
1993
).
You do not currently have access to this content.