Plasma activated water is a chemically active aqueous medium characterized by the presence of reactive oxygen and nitrogen species created by plasma exposure. This particular chemical composition is the starting point of extensive research studies in several domains such as bio-disinfectant in biomedical applications or as fertilizer in agricultural applications. These various applications need adjustments of the PAW properties and consequently require a better control of the PAW chemical composition. To achieve this aim, a UV spectrophotometric method (190–255 nm) is implemented to simultaneously detect the nitrate and nitrite ions in plasma activated water by a gliding arc discharge reactor at atmospheric pressure. The method, tested in plasma activated distilled water (PADW) and in plasma activated tap water (PATW), shows significant increases of nitrite and nitrate concentrations. Preliminary results on PADW and PATW kinetics evolutions highlight a different behavior of the temporal post-discharge reactions leading to non-conversion of the nitrite ions in the case of PATW. The near non-existence of acidification during and after plasma activation encountered in PATW is due to high levels of carbonate species in tap water acting as a buffer solution. Indeed, the presence of hydrogen carbonate (HCO3) leads to the acidity consumption during plasma activation whereas the presence of non-dissolved limestone in hard water (CaCO3) acts as carbonates reserve, and this induces the acidity consumption after plasma treatment.

1.
M.
Tichonovas
,
E.
Krugly
,
V.
Racys
,
R.
Hippler
,
V.
Kauneliene
,
I.
Stasiulaitiene
, and
D.
Martuzevicius
, “
Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment
,”
Chem. Eng. J.
229
,
9
19
(
2013
).
2.
M.
Ursache
,
E.
Hnatiuc
,
B.
Hnatiuc
,
D.
Astanei
,
J. L.
Brisset
, and
R.
Burlica
, “
Direct and delayed degradation of Azorubin (E122) by gliding arc discharges
,”
Environ. Eng. Manage. J.
14
,
2737
2746
(
2015
).
3.
R.
Burlica
,
D. I.
Dirlau
, and
D.
Astanei
, “
Non-thermal plasma mini-reactors for water treatment
,”
Environ. Eng. Manage. J.
18
,
1799
1807
(
2019
).
4.
M.
Magureanu
,
N. B.
Mandache
, and
V. I.
Parvulescu
, “
Degradation of pharmaceutical compounds in water by non-thermal plasma treatment
,”
Water Res.
81
,
124
136
(
2015
).
5.
Y.
Baloul
,
O.
Aubry
,
H.
Rabat
,
C.
Colas
,
B.
Maunit
, and
D.
Hong
, “
Paracetamol degradation in aqueous solution by non-thermal plasma
,”
Eur. Phys. J. Appl. Phys.
79
,
30802
(
2017
).
6.
G. Y.
Park
,
S. J.
Park
,
M. Y.
Choi
,
I. G.
Koo
,
J. H.
Byun
,
J. W.
Hong
,
J. Y.
Sim
,
G. J.
Collins
, and
J. K.
Lee
, “
Atmospheric-pressure plasma sources for biomedical applications
,”
Plasma Sources Sci. Technol.
21
,
043001
(
2012
).
7.
J. H.
Choi
,
I.
Han
,
H. K.
Baik
,
M. H.
Lee
,
D.-W.
Han
,
J.-C.
Park
,
I.-S.
Lee
,
K. M.
Song
, and
Y. S.
Lim
, “
Analysis of sterilization effect by pulsed dielectric barrier discharge
,”
J. Electrost.
64
,
17
22
(
2006
).
8.
M.
Naïtali
,
J.-M.
Herry
,
E.
Hnatiuc
,
G.
Kamgang Youbi
, and
J.-L.
Brisset
, “
Kinetics and bacterial inactivation induced by peroxynitrite in electric discharges in air
,”
Plasma Chem. Plasma Process.
32
,
675
692
(
2012
).
9.
V.
Scholtz
,
J.
Pazlarova
,
H.
Souskova
,
J.
Khun
, and
J.
Julak
, “
Nonthermal plasma—A tool for decontamination and disinfection
,”
Biotechnol. Adv.
33
,
1108
1119
(
2015
).
10.
Z.
Machala
,
B.
Tarabova
,
K.
Hensel
,
E.
Spetlikova
,
L.
Sikurova
, and
P.
Lukes
, “
Formation of ROS and RNS in water electro-sprayed through transient spark discharge in Air and their bactericidal effects
,”
Plasma Process. Polym.
10
,
649
659
(
2013
).
11.
Z.
Machala
,
B.
Tarabová
,
D.
Sersenová
,
M.
Janda
, and
K.
Hensel
, “
Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions
,”
J. Phys. D: Appl. Phys.
52
,
034002
(
2018
).
12.
M.
Selcuk
,
L.
Oksuz
, and
P.
Basaran
, “
Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment
,”
Bioresour.Technol.
99
,
5104
5109
(
2008
).
13.
L.
Sivachandiran
and
A.
Khacef
, “
Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment
,”
RSC Adv.
7
,
1822
1832
(
2017
).
14.
S.-H.
Ji
,
J.-S.
Kim
,
C.-H.
Lee
,
H.-S.
Seo
,
S.-C.
Chun
,
J.
Oh
,
E.-H.
Choi
, and
G.
Park
, “
Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma
,”
Sci. Rep.
9
,
1044
(
2019
).
15.
D.
Astanei
,
D.
Crețu
,
R.
Burlica
,
I.-D.
Dirlau
,
O.
Beniuga
,
S.
Pellerin
, and
M.
Wartel
, “
Voltage polarity influence on NTP energy efficiency of point-to-point reactor
,” in
International Conference on Electromechanical and Energy Systems (SIELMEN)
,
Craiova, Romania
(IEEE,
2019
), pp.
1
4
.
16.
J.-L.
Brisset
,
D.
Moussa
,
A.
Doubla
,
E.
Hnatiuc
,
B.
Hnatiuc
,
G.
Kamgang Youbi
,
J.-M.
Herry
,
M.
Naïtali
, and
M.-N.
Bellon-Fontaine
, “
Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: Examples of gliding discharge treated solutions
,”
Ind. Eng. Chem. Res.
47
,
5761
5781
(
2008
).
17.
G.
Kamgang-Youbi
,
J.-M.
Herry
,
T.
Meylheuc
,
J.-L.
Brisset
,
M.
Bellon-Fontaine
,
A.
Doubla
, and
M.
Naïtali
, “
Microbial inactivation using plasma-activated water obtained by gliding electric discharges
,”
Lett. Appl. Microbiol.
48
,
13
18
(
2009
).
18.
M. J.
Traylor
,
M. J.
Pavlovich
,
S.
Karim
,
P.
Hait
,
Y.
Sakiyama
,
D. S.
Clark
, and
D. B.
Graves
, “
Long-term antibacterial efficacy of air plasma-activated water
,”
J. Phys. D: Appl. Phys.
44
,
472001
(
2011
).
19.
J.-L.
Brisset
and
J.
Pawlat
, “
Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: Discharge, post-discharge and plasma activated water
,”
J. Plasma Chem. Plasma Process.
36
,
355
381
(
2016
).
20.
G.
Kamgang-Youbi
,
J.-M.
Herry
,
M.-N.
Bellon-Fontaine
,
J.-L.
Brisset
,
A.
Doubla
, and
M.
Naïtali
, “
Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: Application to Hafnia alvei
,”
Appl. Environ. Microbiol.
73
,
4791
4796
(
2007
).
21.
M.
Naïtali
,
G.
Kamgang-Youbi
,
J.-M.
Herry
,
M.-N.
Bellon-Fontaine
, and
J.-L.
Brisset
, “
Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water
,”
Appl. Environ. Microbiol.
76
,
7662
7664
(
2010
).
22.
K. M.
Miranda
,
M. G.
Espey
,
D. A.
Wink
, and
A.
Rapid
, “
Simple spectrophotometric method for simultaneous detection of nitrate and nitrite
,”
Nitric Oxide
5
,
62
71
(
2001
).
23.
F.
Judée
,
S.
Simon
,
C.
Bailly
, and
T.
Dufour
, “
Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms
,”
Water Res.
133
,
47
59
(
2018
).
24.
J.-S.
Oh
,
E. J.
Szili
,
K.
Ogawa
,
R. D.
Short
,
M.
Ito
,
H.
Furuta
, and
A.
Hatta
, “
UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance
,”
Jpn. J. Appl. Phys.
57
,
0102B
(
2018
).
25.
F.
Faubert
,
M.
Wartel
,
N.
Pellerin
,
S.
Pellerin
,
V.
Cochet
,
E.
Regnier
, and
B.
Hnatiuc
, “
Treatment by gliding arc of epoxy resin: Preliminary analysis of surface modifications
,”
Proc. SPIE
10010
,
100103G
(
2016
).
26.
J. D.
Burley
and
H. S.
Johnston
, “
Ionic mechanism for heterogeneous stratospheric reaction and ultraviolet photo-absorption cross section for NO2+, HNO3 and NO3 in sulfuric acid
,”
Geophys. Res. Lett.
19
,
1359
1362
, (
1992
).
27.
P.
Lukes
,
E.
Dolezalova
,
I.
Sisrova
, and
M.
Clupek
, “
Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2
,”
Plasma Sources Sci. Technol.
23
,
015019
(
2014
).
28.
V.
Gamaleev
,
N.
Iwata
,
M.
Hori
,
M.
Hiramatsu
, and
M.
Ito
, “
Direct treatment of liquids using low-current arc in ambient air for biomedical applications
,”
Appl. Sci.
9
,
3505
(
2019
).
29.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics, Internet Version 2006
(
Taylor and Francis
,
Boca Raton
,
FL
,
2006
).
30.
A. G.
Dickson
, “
The carbon dioxide system in sea-water-equilibrium chemistry and measurements
,” in
Guide to Best Practices for Ocean Acidification Research and Data Reporting
, edited by
U.
Riebesell
,
V. F.
Fabry
,
L.
Hansson
, and
J.-P.
Gattuso
(
European Commission, Publications Office of the European Union
,
2010
), pp.
17
40
.
31.
C. E.
Housecroft
and
A. H.
Sharpe
,
Inorganic Chemistry
, 2nd ed. (
Prentice-Pearson-Hall
,
2005
), p.
368
.

Supplementary Material

You do not currently have access to this content.