We utilize atomistic simulations that account for point charges and dipoles to demonstrate that flexoelectricity, which arises from strain gradients, can be exploited to generate electricity from crumpled graphene sheets. Indentation of a circular graphene sheet generates localized developable (d)-cones, for which we verify the core radius and azimuthal angle with established theoretical models. We determine the voltage that can be generated based on the resulting electrostatic fields and compare the voltage generation to previous theoretical predictions that are scaled down to the nanoscale. In doing so, we find that the voltage generated from crumpling graphene exceeds, by about an order of magnitude, the expected voltage generation, indicating the benefit of exploiting the large strain gradients that are possible at the nanoscale. Finally, we demonstrate that crumpling may be a superior mechanism of flexoelectric energy generation as compared to bending of two-dimensional nanomaterials.

1.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
, “
Thermal properties of graphene: Fundamentals and applications
,”
MRS Bull.
37
(
12
),
1273
1281
(
2012
).
2.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
, “
Dimensional crossover of thermal transport in few-layer graphene
,”
Nat. Mater.
9
(
7
),
555
(
2010
).
3.
R.
Fei
and
L.
Yang
, “
Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus
,”
Nano Lett.
14
(
5
),
2884
2889
(
2014
).
4.
S.
Yu
,
X.
Wu
,
Y.
Wang
,
X.
Guo
, and
L.
Tong
, “
2D materials for optical modulation: Challenges and opportunities
,”
Adv. Mater.
29
(
14
),
1606128
(
2017
).
5.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
(
2012
).
6.
P. Z.
Hanakata
,
A.
Carvalho
,
D. K.
Campbell
, and
H. S.
Park
, “
Polarization and valley switching in monolayer group-IV monochalcogenides
,”
Phys. Rev. B
94
(
3
),
035304
(
2016
).
7.
R. C.
Andrew
,
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
, “
Mechanical properties of graphene and boronitrene
,”
Phys. Rev. B
85
(
12
),
125428
(
2012
).
8.
B.
Javvaji
,
P.
Budarapu
,
V.
Sutrakar
,
D. R.
Mahapatra
,
M.
Paggi
,
G.
Zi
, and
T.
Rabczuk
, “
Mechanical properties of graphene: Molecular dynamics simulations correlated to continuum based scaling laws
,”
Comput. Mater. Sci.
125
,
319
327
(
2016
).
9.
S. J.
Kim
,
K.
Choi
,
B.
Lee
,
Y.
Kim
, and
B. H.
Hong
, “
Materials for flexible, stretchable electronics: Graphene and 2D materials
,”
Annu. Rev. Mater. Res.
45
,
63
84
(
2015
).
10.
Z.
Sun
,
A.
Martinez
, and
F.
Wang
, “
Optical modulators with 2D layered materials
,”
Nat. Photonics
10
(
4
),
227
(
2016
).
11.
R.
Mas-Ballesté
,
C.
Gómez-Navarro
,
J.
Gómez-Herrero
, and
F.
Zamora
, “
2D materials: To graphene and beyond
,”
Nanoscale
3
(
1
),
20
30
(
2011
).
12.
X.
Zhuang
,
B.
He
,
B.
Javvaji
, and
H. S.
Park
, “
Intrinsic bending flexoelectric constants in two-dimensional materials
,”
Phys. Rev. B
99
(
5
),
054105
(
2019
).
13.
B.
Javvaji
,
B.
He
,
X.
Zhuang
, and
H. S.
Park
, “
High flexoelectric constants in Janus transition-metal dichalcogenides
,”
Phys. Rev. Mater.
3
(
12
),
125402
(
2019
).
14.
L. J.
McGilly
,
A.
Kerelsky
,
N. R.
Finney
,
K.
Shapovalov
,
E.-M.
Shih
,
A.
Ghiotto
,
Y.
Zeng
,
S. L.
Moore
,
W.
Wu
,
Y.
Bai
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Stengel
,
L.
Zhou
,
J.
Hone
,
X.
Zhu
,
D. N.
Basov
,
C.
Dean
,
C. E.
Dreyer
, and
A. N.
Pasupathy
, “
Visualization of Moiré superlattices
,”
Nat. Nanotechnol.
15
(
7
),
580
584
(
2020
).
15.
V. I.
Artyukhov
,
S.
Gupta
,
A.
Kutana
, and
B. I.
Yakobson
, “
Flexoelectricity and charge separation in carbon nanotubes
,”
Nano Lett.
20
(
5
),
3240
3246
(
2020
).
16.
B.
Mortazavi
,
B.
Javvaji
,
F.
Shojaei
,
T.
Rabczuk
,
A. V.
Shapeev
, and
X.
Zhuang
, “
Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles
,”
Nano Energy
82
,
105716
(
2021
).
17.
S.
Kumar
,
D.
Codony
,
I.
Arias
, and
P.
Suryanarayana
, “
Flexoelectricity in atomic monolayers from first principles
,”
Nanoscale
13
(
3
),
1600
1607
(
2021
).
18.
T.
Pandey
,
L.
Covaci
, and
F.
Peeters
, “
Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization
,”
Carbon
171
,
551
559
(
2021
).
19.
J.-W.
Jiang
,
Z.
Qi
,
H. S.
Park
, and
T.
Rabczuk
, “
Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect
,”
Nanotechnology
24
(
43
),
435705
(
2013
).
20.
Q.
Deng
,
M.
Kammoun
,
A.
Erturk
, and
P.
Sharma
, “
Nanoscale flexoelectric energy harvesting
,”
Int. J. Solids Struct.
51
(
18
),
3218
3225
(
2014
).
21.
R.
Hinchet
,
U.
Khan
,
C.
Falconi
, and
S.-W.
Kim
, “
Piezoelectric properties in two-dimensional materials: Simulations and experiments
,”
Mater. Today
21
(
6
),
611
630
(
2018
).
22.
C.
Cui
,
F.
Xue
,
W. J.
Hu
, and
L. J.
Li
, “
Two-dimensional materials with piezoelectric and ferroelectric functionalities
,”
npj 2D Mater. Appl.
2
(
1
),
18
(
2018
).
23.
M. B.
Ghasemian
,
T.
Daeneke
,
Z.
Shahrbabaki
,
J.
Yang
, and
K.
Kalantar-Zadeh
, “
Peculiar piezoelectricity of atomically thin planar structures
,”
Nanoscale
12
,
2875
2901
(
2020
).
24.
B.
Wang
,
Y.
Gu
,
S.
Zhang
, and
L.-Q.
Chen
, “
Flexoelectricity in solids: Progress, challenges, and perspectives
,”
Prog. Mater. Sci.
106
,
100570
(
2019
).
25.
X.
Wang
,
A.
Cui
,
F.
Chen
,
L.
Xu
,
Z.
Hu
,
K.
Jiang
,
L.
Shang
, and
J.
Chu
, “
Probing effective out-of-plane piezoelectricity in van der Waals layered materials induced by flexoelectricity
,”
Small
15
(
46
),
1903106
(
2019
).
26.
D.
Tan
,
M.
Willatzen
, and
Z. L.
Wang
, “
Out-of-plane polarization in bent graphene-like zinc oxide and nanogenerator applications
,”
Adv. Funct. Mater.
30
(
5
),
1907885
(
2020
).
27.
M.
Willatzen
,
P.
Gao
,
J.
Christensen
, and
Z. L.
Wang
, “
Acoustic gain in solids due to piezoelectricity, flexoelectricity, and electrostriction
,”
Adv. Funct. Mater.
30
,
2003503
(
2020
).
28.
K. P.
Dou
,
H. H.
Hu
,
X.
Wang
,
X.
Wang
,
H.
Jin
,
G.-P.
Zhang
,
X.-Q.
Shi
, and
L.
Kou
, “
Asymmetrically flexoelectric gating effect of Janus transition-metal dichalcogenides and their sensor applications
,”
J. Mater. Chem. C
8
,
11457
11467
(
2020
).
29.
D.
Bennett
, “
Flexoelectric-like radial polarization of single-walled nanotubes from first-principles
,”
Electron. Struct.
3
,
015001
(
2021
).
30.
S.
Chandratre
and
P.
Sharma
, “
Coaxing graphene to be piezoelectric
,”
Appl. Phys. Lett.
100
(
2
),
12
15
(
2012
).
31.
B.
Javvaji
,
B.
He
, and
X.
Zhuang
, “
The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries
,”
Nanotechnology
29
(
22
),
225702
(
2018
).
32.
R.
Gleiter
, “
Pi-sigma interactions: Experimental evidence and its consequences for the chemical reactivity of organic compounds
,”
Pure Appl. Chem.
59
(
12
),
1585
1594
(
1987
).
33.
S.
Park
,
J.
Park
,
Y.-G.
Kim
,
S.
Bae
,
T.-W.
Kim
,
K.-I.
Park
,
B. H.
Hong
,
C. K.
Jeong
, and
S.-K.
Lee
, “
Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors
,”
Nano Energy
78
,
105266
(
2020
).
34.
F. J.
Maier
,
M.
Schneider
,
J.
Schrattenholzer
,
W.
Artner
,
K.
Hradil
,
A.
Artemenko
,
A.
Kromka
, and
U.
Schmid
, “
Flexoelectricity in polycrystalline TiO2 thin films
,”
Acta Mater.
190
,
124
129
(
2020
).
35.
P.
Kodali
,
G.
Saravanavel
, and
S.
Sambandan
, “
Crumpling for energy: Modeling generated power from the crumpling of polymer piezoelectric foils for wearable electronics
,”
Flexible Printed Electron.
2
,
035005
(
2017
).
36.
B.
Wang
,
S.
Yang
, and
P.
Sharma
, “
Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets
,”
Phys. Rev. B
100
,
035438
(
2019
).
37.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Chem. Phys.
112
(
14
),
6472
6486
(
2000
).
38.
A.
Mayer
, “
Polarization of metallic carbon nanotubes from a model that includes both net charges and dipoles
,”
Phys. Rev. B
71
(
23
),
235333
(
2005
).
39.
A.
Mayer
, “
Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes
,”
Phys. Rev. B
75
(
4
),
045407
(
2007
).
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
41.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
(
1
),
33
38
(
1996
).
42.
W.
Jiang
,
Y.
Zeng
,
Q.
Qin
, and
Q.
Luo
, “
A novel oscillator based on heterogeneous carbon@MoS2 nanotubes
,”
Nano Res.
9
(
6
),
1775
1784
(
2016
).
43.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
44.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
45.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
,
K. R.
Wilson
,
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
46.
S.
Chen
,
S.
Gonella
,
W.
Chen
, and
W. K.
Liu
, “
A level set approach for optimal design of smart energy harvesters
,”
Comput. Methods Appl. Mech. Eng.
199
(
37–40
),
2532
2543
(
2010
).
47.
S. S.
Nanthakumar
,
T.
Lahmer
,
X.
Zhuang
,
H. S.
Park
, and
T.
Rabczuk
, “
Topology optimization of piezoelectric nanostructures
,”
J. Mech. Phys. Solids
94
,
316
335
(
2016
).
48.
A.
Homayouni-Amlashi
,
T.
Schlinquer
,
A.
Mohand-Ousaid
, and
M.
Rakotondrabe
, “
2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters
,”
Struct. Multidiscipl. Optim.
63
(
2
),
983
1014
(
2021
).
49.
S.
Chaïeb
,
F.
Melo
, and
J.-C.
Géminard
, “
Experimental study of developable cones
,”
Phys. Rev. Lett.
80
(
11
),
2354
2357
(
1998
).
50.
E.
Cerda
and
L.
Mahadevan
, “
Conical surfaces and crescent singularities in crumpled sheets
,”
Phys. Rev. Lett.
80
(
11
),
2358
2361
(
1998
).
51.
T.
Liang
and
T. A.
Witten
, “
Crescent singularities in crumpled sheets
,”
Phys. Rev. E
71
(
1
),
016612
(
2005
).
52.
T.
Dumitrică
,
C. M.
Landis
, and
B. I.
Yakobson
, “
Curvature-induced polarization in carbon nanoshells
,”
Chem. Phys. Lett.
360
(
1-2
),
182
188
(
2002
).
53.
V. J.
Surya
,
K.
Iyakutti
,
H.
Mizuseki
, and
Y.
Kawazoe
, “
Modification of graphene as active hydrogen storage medium by strain engineering
,”
Comput. Mater. Sci.
65
,
144
148
(
2012
).
54.
I.
Nikiforov
,
E.
Dontsova
,
R. D.
James
, and
T.
Dumitrică
, “
Tight-binding theory of graphene bending
,”
Phys. Rev. B
89
(
15
),
1
13
(
2014
).
55.
R. C.
Haddon
, “
Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the σ bond angles
,”
J. Phys. Chem. A
105
(
16
),
4164
4165
(
2001
).
56.
H.
Ghasemi
,
H. S.
Park
, and
T.
Rabczuk
, “
A multi-material level set-based topology optimization of flexoelectric composites
,”
Comput. Methods Appl. Mech. Eng.
332
,
47
62
(
2018
).
57.
S. I.
Kundalwal
,
V. K.
Choyal
,
N.
Luhadiya
, and
V.
Choyal
, “
Effect of carbon doping on electromechanical response of boron nitride nanosheets
,”
Nanotechnology
31
(
40
),
405710
(
2020
).
You do not currently have access to this content.